2022年7月25日,美国加州大学洛杉矶分校(UCLA)材料科学与工程系主任黄昱教授课题组在Nature Nanotechnology期刊上发表了一篇题为“Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading condition”的研究成果。
该成果报道了一种由石墨烯纳米袋保护的PtCo纳米催化剂并应用于质子交换膜燃料电池作为阴极催化剂,由此实现在极具挑战性的超低铂载量条件下燃料电池功率密度及耐久性同时达到国际先进水平,预期应用此报道催化剂可将燃料电池汽车所需铂族金属量降至与内燃机汽车尾气处理所需相当的水平,这意味着大幅降低燃料电池所需铂族金属并使其大规模应用不再受限于铂族金属极有限的储量与产量,为进一步推进燃料电池大规模应用铺垫了道路。
论文通讯作者是黄昱教授;第一作者赵紫鹏教授现就职北京理工大学;第一作者刘泽延现就读于加州大学洛杉矶分校(UCLA)。
研究意义
质子交换膜燃料电池(PEMFCs)作为可替代内燃机的绿色动力装置理论上可不依赖含碳化石能源,因此PEMFCs的发展与应用对实现国家“碳达峰”“碳中和”的发展目标有重大的意义。对于目前商用的PEMFCs来说,铂族金属(PGM)是不可替代的催化剂材料,尤其是用来加速阴极缓慢的氧还原反应(ORR)。铂族金属同样被内燃机汽车所需要并用于尾气催化处理。目前汽车工业需求占全球近一半的PGM产量,而目前燃料电池汽车所需的铂族金属5-10倍于内燃机汽车,以目前的燃料电池PGM需求量,燃料电池汽车替代内燃机汽车势必导致铂族金属供不应求,而由于全球铂族金属的储量与产量皆极其有限,这对燃料电池的规模化应用是极大的阻碍。在此前的应用场景中,铂族金属负载量的降低往往带来燃料电池装置性能的牺牲以及稳定性差的问题,这促使全球范围的科研工作者竞相开发催化活性更高同时也更稳定的催化剂,以实现将燃料电池汽车铂族金属需求量降至内燃机汽车水平。
工作难点
在通常的研究中,PGM催化剂的本征质量活性(MA)由比面积活性(SA)和电化学表面积(ECSA)决定。一方面,提高PGM催化剂的SA,即通过提高单个活性位点的转换频率(TOF),可以在超低PGM负载量的情况下确保整个燃料电池装置的高催化活性。然而TOF的提升无疑会增加物质输运的压力,因为这意味需要向单个活性位点更快地传输反应物同时更快地移走产物。另一方面,减少催化剂的尺寸,构造超细小的纳米催化剂,使其具有高的ECSA,也是解决超低PGM负载时催化活性受限问题的一个思路。然而,具有高的表面积-体积比的超细小纳米颗粒在在热力学上是亚稳定的,使得纳米颗粒倾向于通过物理聚集或者Ostwald熟化过程发生显著的长大,这会造成ECSA以及MA的逐步损失,稳定性难以满足要求。因此超低PGM负载的PEMFCs的长程稳定性的实现面临十分严峻的挑战,这要求在纳米催化剂的设计中兼顾催化剂尺寸的超细小以及卓越的稳定性。
创新思路
有鉴于此,近日,Nature Nanotechnology期刊报道了设计和合成了一种应用于超低贵金属载量的PEMFCs且十分稳定的由石墨烯纳米口袋保护的超细小PtCo纳米催化剂(图1a)。通过这种设计,将超细小的纳米催化剂保护在石墨烯纳米口袋中在确保电化学可达到性的同时,还可以限制催化剂的聚集,并且缓解了催化剂的氧化溶解、Ostwald熟化过程。即使在超低PGM负载的十分苛刻的情况下,这种特殊的结构依旧可以确保优异的活性及卓越的催化稳定性。应用此催化剂的燃料电池在极具挑战性的超低PGM载量情况下体现出了优异的性能及耐久性。
研究内容
图1:保护性纳米口袋设计示意图和PtCo@Gnp表征。
PtCo@Gnp催化剂是通过将有机金属Pt和Co的前驱体(Pt(acac)2和Co(acac)2)负载到碳基体上,随后在700℃下进行退火,最后将热解得到的催化剂在硫酸中酸洗除去较易被溶解的Co制得。透射电子显微镜(TEM)研究表明,超细纳米颗粒均匀分布在碳载体上,质量加权平均尺寸为3.0±0.8 nm(图1b,c)。粉末X射线衍射研究表明,所得催化剂为面心立方结构,与Pt/C相同。通过电感耦合等离子体原子发射光谱(ICP-AES)分析整体组成得出Pt:Co原子比为80.8:19.2,而表面敏感的X射线光电子能谱显示更高的Pt:Co比(89.4:10.6),这表明催化剂具有壳层富含Pt的核壳结构,这也被扫描透射电子显微镜(STEM)和相应的能量色散X射线光谱(EDS)元素映射研究所证实(图1d)。借助于高分辨率STEM,进一步分析PtCo@Gnp。将高角度环形暗场和明场STEM图像进行仔细比较发现,超细PtCo纳米颗粒明显包裹在由单层或几层石墨烯外壳组成的纳米级口袋中(图1e)。特别是,明场图像还清楚地表明,PtCo纳米颗粒很好地支撑在具有可清楚分辨的石墨层的碳骨架结构上。还值得注意的是,围绕在PtCo纳米颗粒外的附加石墨层(通常是单层石墨烯)也清晰可见。经过全面的分析检查,结果表明,所有的PtCo纳米颗粒都被包裹在类似的石墨烯纳米袋中(图1e)。PtCo纳米粒子周围石墨烯外层的存在也通过电子能量损失光谱(EELS)映射得到了证实。值得注意的是,这种石墨烯纳米袋与PtCo表面之间通常存在着纳米级尺度的间距(~0.4-1.0 nm),即形成了一个非接触式外壳,这使得PtCo@Gnp是电化学可及的。此外,PtCo@Gnp还具有优异的ECSA(68.7 m2gPGM-1),大大高于Pt/C(34.7 m2gPGM-1),这与所测量粒径相应的预期ECSA高度一致。同样,使用旋转圆盘电极测量的PtCo@Gnp(1.62 mA cm-2)的氧还原反应SA也是Pt/C(0.61 mA cm-2)的2.7倍。上述特征清楚地表明石墨烯纳米袋可能是多孔的,这使得催化剂表面是可及的,因此PtCo@Gnp具有电化学活性。
图2:Pt/C、c-PtCo/C和PtCo@Gnp催化剂的MEA性能和文献中具有代表性的催化剂对比。
研究人员对照DOE 2020性能目标评估PtCo@Gnp在超低贵金属载量的燃料电池中的性能,研究人员制备了PGM负载分别为0.090和0.060 mgPGMcm-2两种不同的阴极。加上0.010 mgPGMcm-2(商业 Pt/C)的阳极负载量,MEA总PGM负载量分别为0.100和0.070 mgPGMcm-2。0.070 mgPGMcm-2的PGM负载量仅为Toyota Mirai燃料电池汽车所用电堆中PGM负载量(0.365 mgPGMcm-2)的19%,并接近DOE铂族金属负载量的最终目标(0.0625 mgPGMcm-2)。在阴极PGM负载量分别为0.090 mgPGMcm-2和0.060 mgPGMcm-2的条件下,PtCo@Gnp的初始MA分别为为1.14 A mgPGM-1和1.21 A mgPGM-1(图2),显著高于Pt/C(0.42和0.40 A mgPGM-1)、商业PtCo/C催化剂(c-PtCo)(0.57 A mgPGM-1)和DOE目标(0.44 A mgPGM-1)。研究人员还参照最新的30,000周期方波测试,在每个循环中将阴极分别在0.6 V和0.95 V下保持3 s,进行了ADT测试。即使在超低负载(0.070 mgPGMcm-2)的情况下,PtCo@Gnp在更具挑战性的方波ADT后依旧保留了其初始MA的73%,这远高于相同负载量的Pt/C(25%)和c-PtCo/C(30%)。因此,基于苛刻的超低PGM负载水平的PtCo@Gnp在方波ADT中展现出了非常高的耐久性(图2d)。此外,还值得注意的是,PtCo@Gnp的EOL MA(0.89 A mgPGM-1)已经高于DOE目标(0.264 A mgPGM-1)的3倍,高于c-PtCo/C(0.17 A mgPGM-1)的5倍,并且是Pt/C(0.10 A mgPGM-1)的近9倍(表1),这是迄今为止MEA测试中报告的最高EOL MA之一(图2d)。
表1:基于PtCo@Gnp的MEA和相关文献中的MEA关键性能对比。
图3:氢气/氧气环境下测试的超低PGM负载量(阴极和阳极总量为0.07 mgPGMcm-2)下的MEA极化曲线。
虽然纯氧下的阴极MA测试更好地评估了受传质问题影响较小的内在活性,但使用空气作为氧源的额定功率测试直接反映了PEMFC在工作环境下的实际性能。按照推荐的DOE测试方法,MEA的额定功率在0.67V下进行评估,燃料电池在94°C下运行。在从低到高的电流密度范围内,PtCo@Gnp都表现出明显优于Pt/C或c-PtCo/C的性能(图3a)。特别是,PtCo@Gnp在PGM负载分别为0.100和0.070 mgPGMcm-2(图3d)时提供了10.1和13.2 W mgPGM-1的质量归一化额定功率,这两者都大大超过了DOE目标(8 W mgPGM-1)(图3e)。令人印象深刻的是,PtCo@Gnp表现出了出色的耐用性,远远优于Pt/C和c-PtCo/C(表1),这在ADT之后的EOL额定功率性能中也可以被反映出来。特别是在0.070 mgPGMcm-2的超低 PGM 负载下,PtCo@Gnp的EOL额定功率为11.4 W mgPGM-1,远远超过Pt/C(3.8 W mgPGM-1)(图3e和表1)。同样,即使在0.070 mgPGMcm-2的超低PGM负载下,PtCo@Gnp在0.8 A cm-2时的电压损耗也仅为18.8 mV(满足DOE目标损耗< 30 mV),在相同负载下,比Pt/C(163 mV) 或c-PtCo/C(100.8 mV)小近一个数量级(图3f和表1),这彰显出PtCo@Gnp的稳定性实现了显著提高。研究人员还进一步研究了面积归一化额定功率,这是标定实际应用性能的另一个关键参数。在PGM负载为0.100 mgPGMcm-2时,PtCo@Gnp可以提供1.01 W cm-2的额定功率,满足了DOE目标(1.0W cm-2)并优于Pt/C(0.91 W cm-2)。PtCo@Gnp的卓越耐用性尤其体现在其优异的EOL面积额定功率上。在ADT之后,PtCo@Gnp在0.100 mgPGMcm-2的PGM负载下仍具有0.87 W cm-2EOL额定功率,大大优于Pt/C(0.57 W cm-2)。此外,在0.070 mgPGMcm-2的超低PGM负载下,PtCo@Gnp MEA更是表现出惊人的0.80 W cm-2的EOL面积额定功率,远远超过相同负载下的Pt/C(0.27 W cm-2)或c-PtCo /C(0.52 W cm-2)(表1),表明PtCo@Gnp即使在要求更高的超低PGM负载条件下,也具有非凡的耐用性。因此,当PtCo@Gnp催化剂在高要求的超低负载条件下工作时,其所有EOL性能指标均超过DOE目标(表1)。这种显著提高的EOL性能可以在整个生命周期内提供更均匀的功率输出,这对于实际应用来说是十分需要的。此外,基于MA退化或电压损失的线性外推,这种显著提高且已超出DOE目标的耐久性可以显著延长燃料电池寿命约50%。
图4:EOL的催化剂表征,粒径分布分析和相应的MEA测试结果
为了理解不同催化剂之间显著的稳定性差异,研究人员们对在MEA中经过ADT之后的不同催化剂进行了表征和对比。首先分析了ADT之后纳米颗粒尺寸分布的变化。为了正确反映不同尺寸颗粒的质量分数,绘制了质量加权尺寸分布。总体而言,Pt/C的质量加权尺寸从循环周期开始(BOL)的5.7±2.0 nm急剧增加到EOL的12.2±5.6nm(图4a)。在c-PtCo/C中也观察到类似的尺寸增加(图4b)。纳米颗粒尺寸的这种增加主要归因于:(1)纳米颗粒分离,移动,然后聚集,以及(2)氧化溶解、扩散和奥斯特瓦尔德熟化过程。为此,石墨烯外壳可以有效地防止纳米粒子的移动和聚集,并大大延缓了氧化溶解和扩散,因为它在很大程度上将溶解的Pt原子保留在了石墨烯口袋内,这些原子可以重新沉积到PtCo纳米粒子上,从而有助于保持超细小的PtCo纳米粒子的尺寸。实际上,PtCo@Gnp中PtCo纳米颗粒的质量加权平均尺寸仅从BOL的3.4±1.1 nm适度地增加到了EOL的5.1±1.7 nm(图4c),这清楚地表明石墨烯纳米袋的存在有效抑制了尺寸增长并提高了PtCo纳米催化剂的整体耐久性。高分辨率STEM图像和EDS图证实了PtCo@Gnp中的PtCo纳米颗粒在EOL时仍保留了其核壳状结构和富含Pt的壳(图4d)。还值得注意的是,保护性石墨烯纳米袋虽然依旧保留在PtCo纳米颗粒上,但它们之间的空间有所减小(图4e,f)。这很可能是因为石墨烯纳米袋在ADT后变得更加亲水,从而由于TEM样品制备过程中的毛细作用力而塌陷到了PtCo纳米颗粒上。PtCo@Gnp中质量加权尺寸的小幅增加(从3.4到5.1 nm)使得其在EOL时仍然保留了相对较高的ECSA(32.4 m2gPGM-1),大大高于Pt/C(13.2 m2gPGM-1)和c-PtCo/C(13.6 m2gPGM-1)(图4g)。通过氧传输阻力研究也可以证明PtCo@Gnp在燃料电池工作期间可以保持高ECSA。因为MEA中与压力无关的氧传输阻力(RP-Ind)与电极每单位面积的活性位点数量成反比。与Pt/C(640%)和c-PtCo/C(265%)MEA中RP-Ind的显著增加相比,PtCo@Gnp MEA在ADT后显示出小得多的增加,仅为约100%(图4h)。Pt/C电极的RP-Ind急剧增加可归因于颗粒尺寸(12.2nm)的显著增加和颗粒密度的显著降低(从5.2×1013到8.1×1012cm-2),这导致氧扩散到达活性位点的阻力明显增加。相比之下,PtCo@Gnp在EOL处保留了相对较小的尺寸(5.1 nm)和高颗粒密度(5.7×1013cm-2),以确保足够低的RP-Ind,这对于长期稳定性至关重要(图4i)。
总结展望
研究人员通过将超细小纳米催化剂包裹在石墨烯纳米袋中,开发出了一种新的PtCo@Gnp设计,该催化剂在实际MEA应用中显示出优异的活性及稳定性。
1) 该催化剂在超低PGM负载(0.070 mgPGMcm-2)条件下保证了PEMFCs仍具有高度稳健的性能,MA高达1.21 A gPGM-1、额定功率高达13.2 W mgPGM-1同时具有十分优异的耐久性(ADT后MA 保持率为73%,在0.8 A cm-2处电压损失仅为18.8 mV),所有这些都超过了相关的DOE 2020目标。
2) 凭借在超低PGM负载下MEA的高额定功率和高耐用性,PtCo@Gnp有望将90 kW燃料电池汽车所需的PGM大幅降低至6.8克左右,与内燃机动力车辆的尾气催化转化器中的PGM(2-8克)负载相当。
本文报道的催化剂在更具挑战性的超低负载的情况下同时实现了高活性和优异的稳定性,应用文章所报道的催化剂可大幅减少实际应用中的PEMFCs的铂族金属用量,可预期一辆燃料电池汽车所需铂族金属总质量与一辆内燃机汽车大致相当,从而在规模化生产时显著降低成本,并在燃料电池汽车规模化替代内燃机汽车的过程中减轻铂族金属储量及市场供应所带来的影响与限制。本文所报道的工作将是PEMFCs的大规模推广的关键一步,具有里程碑意义。(来源:科学网)
相关论文信息:https://doi.org/10.1038/s41565-022-01170-9