?
周志华 全国政协委员、南京大学人工智能学院院长
机器学习基础研究相对门槛高,研究成果不仅在短期内难以体现效益,且在以高质量论文数、引用数等为指标的评价体系中也不占优势,这导致青年人才趋向应用研究。
我建议,完善评审机制,强化“量身定制”的分类评价,通过区分申请代码、优化分包机制等手段,尽量避免机器学习基础研究与应用技术研究两类项目和人员被分在一起、统一评价的情况。强化评审专家与项目的匹配度,提升“小同行”比例,引导专家从研究工作的技术内涵评价其质量水平。
同时,优化考核方式,重点考核基础研究原创价值和学术贡献。
我建议在科研项目指南中预设一定比例的基础类指南,在评审环节适当调高对机器学习基础研究的支持比例。
(本报记者 金凤整理)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。