来源:Frontiers in Energy 发布时间:2022/2/24 13:56:06
选择字号:
FIE| 前沿研究: TiN/N-TiO2复合材料的原位合成及其增强的光催化产氢活性

论文标题:In situgrown TiN/N-TiO2composite for enhanced photocatalytic H2 evolution activity(TiN/N-TiO2复合材料的原位合成及其增强的光催化产氢活性)

期刊:Frontiers in Energy

作者:Dong LIU ,Zhuqing YAN ,Peng ZENG ,Haoran LIU ,Tianyou PENG ,Renjie LI

发表时间: 04 Aug 2021

DOI:10.1007/s11708-021-0766-8

微信链接:点击此处阅读微信文章

摘要

以水热法合成的TiO2和三聚氰胺(MA)为原料,采用原位氮化法制备了氮化钛(TiN)修饰的N-掺杂二氧化钛(N-TiO2)复合材料(TiN/N-TiO2)。通过优化反应条件,得到的TiN/N-TiO2复合材料在氙灯全光谱照射下的析氢活性高达703 μmolh-1,分别是单纯的TiO2和TiN的2.6倍和32.0倍。为了探索其光催化反应机理,对复合材料的晶相、形貌、光吸收性能、能带结构、元素组成和电化学行为进行了表征和分析。结果表明,TiN/N-TiO2复合材料光催化活性的提高主要是由于在原位生产的TiN和N-TiO2界面形成了紧密的接触,这不仅扩展了复合材料的光谱响应范围,而且可加速TiN光激发热载流子的转移和分离。本研究为原位制备具有高效分解水产氢活性的非金属等离子体材料/N-掺杂TiO2复合光催化材料提供了一条新的途径。

研究背景及意义

半导体光催化产氢被认为是可缓解当前人类社会所面临的能源短缺问题的一种颇具发展潜力的新技术。在报道的种类繁多的光催化材料中,TiO2作为一种n型半导体材料,因具有环境友好、成本低、理化稳定性好等优点而得到了广泛应用。然而,宽禁带(∼3.20 eV)的TiO2只能吸收太阳光谱中的紫外光,而紫外线(l< 400 nm)只占太阳光谱的能量的∼4%。因此,人们尝试探索掺杂额外元素,开发窄带隙半导体,构建复合半导体或染料敏化体系等能有效利用太阳光谱的可见光和红外光的光催化体系。其中,半导体异质结的构建是在提高光捕获能力的同时抑制光生电荷复合的有效策略,因此是光催化能量转换领域一个极具吸引力和挑战性的课题。

氮化钛(TiN)具有面心立方(fcc)结构,由于其优异的金属特性和理化稳定性,在电化学能量转换领域得到了广泛应用。此外,TiN在可见-近红外(NIR)光谱范围内具有良好的等离子体效应,其功函大于或等于用于光催化的大多数金属氧化物半导体的电子亲和力。因此,将TiN与TiO2复合可望提高体系的可见光捕获能力和增强其光催化性能。虽然目前有一些关于等离子体TiN促进光电化学析氧反应的报道,但将TiN用于光催化析氢反应的研究尚未见报道。

本文采用水热合成的TiO2和三聚氰胺(MA)作为原料,利用简便的氮化工艺在同时形成的N-掺杂TiO2(N-TiO2)表面原位生长TiN,并改变TiO2/MA质量比合成了系列TiN/N-TiO2复合材料。发现TiN/N-TiO2复合材料中原位形成的等离子体激元TiN和N-TiO2均可拓展TiO2的光谱响应范围,且其紧密的界面接触促进了TiN的光生热载流子的转移和分离,因而实现了高效光催化产氢活性。此外,在对其能带结构和电化学行为研究的基础上探讨了TiN/N-TiO2复合材料的光催化性能增强机理。

研究内容

TiO2原位氮化过程中,改变TiO2/MA质量比可以制备N-TiO2和TiN及其复合材料(TiN/N-TiO2)。当TiO2/MA质量比增加到1:7和1:10,更多的TiN纳米粒子紧密附着在N-TiO2表面,且在该复合材料中的TiN和N-TiO2均在氮化过程中原位形成因而具有紧密的界面接触。在氙灯全光谱照射下,TiN/N-TiO2复合材料的光催化产氢活性最高可达703 μmol h-1,分别是单纯的TiO2和TiN的2.6倍和32.0倍;在可见光(l> 400 nm)光照下,单纯的TiO2和TiN的光催化活性均较低,但复合材料的产氢活性仍高达368 μmol h-1(图1a)。此外,复合材料也表现出了较好的产氢稳定性。这可归因于复合材料中紧密接触的TiN和N-TiO2组分不仅拓展了体系的光谱响应范围,而且促进了TiN的光生热载流子的转移和分离,因而实现了高效的光催化产氢活性。

TiN因其等离子体效应而在400-800 nm范围内具有明显的可见光吸收。TiN/N-TiO2复合材料中由于TiO2晶格中的氮掺杂导致其吸收边延伸到可见光区;随着TiO2/MA质量比的增加,可见光吸收强度逐渐升高,带隙逐渐减小。因此,TiN/N-TiO2复合材料的吸收边扩展到约485.0 nm,且因其TiN的等离子体效应而在450–900 nm范围内显示出额外的可见光吸收。微结构和光电化学行为测试结果表明复合材料中N-TiO2和TiN组分具有匹配的能级和紧密的界面接触,从而有利于TiN的光生热载流子注入N-TiO2,这些注入的电子和N-TiO2的光激发电子进一步转移到Pt助催化剂参与析氢反应(图2a)。该推测机理得到了瞬态光电流响应和电化学阻抗谱实验结果的证实。例如,TiN/N-TiO2显示最大的光电流(图2b),表明该复合材料具有更有效的电荷转移/分离效率。基于以上结果和讨论,可以认为N掺杂和TiN的等离子体效应、能带结构的良好匹配以及TiN与N-TiO2之间的紧密界面接触等都有利于提高复合材料的可见光利用率,光生电荷载流子(含热载流子)的转移和分离,从而显示出增强的光催化产活性。

图1 (a)TiO2/MA质量比对产物的全光谱或可见光照下的光催化产氢活性的影响;(b)优化光反应条件和氙灯全光谱光照下TiN/N-TiO2复合材料的光催化产氢稳定性。

图2 (a)TiN/N-TiO2复合材料光催化产氢机理示意图;(b)TiO2、TiN和TiN/N-TiO2复合材料的光电流-时间曲线.

研究亮点

本文考察了原位氮化反应条件对TiN/N-TiO2复合材料的晶相组成、形貌、光吸收性能、能带结构、元素组成电化学行为和光催化产氢性能等的影响。研究发现:1)随着TiO2/MA质量比增加到1:7和1:10,更多的TiN纳米粒子紧密附着在N-TiO2表面,形成具有紧密界面接触的TiN修饰的N-TiO2复合材料;2)在氙灯全光谱照射下,TiN/N-TiO2复合材料的光催化产氢活性最高可达703 μmolh-1,分别是单纯的TiO2和TiN的2.6倍和32.0倍;在可见光光照下,单纯的TiO2和TiN的光催化活性均较低,但复合材料的产氢活性仍高达368 μmolh-1,且表现出了较好的产氢稳定性;3)原位氮化过程中的N掺杂和形成的TiN的等离子体效应、能带结构的良好匹配以及TiN与N-TiO2之间的紧密界面接触等都有利于提高复合材料的可见光利用率,光生电荷载流子(含热载流子)的转移和分离,从而显示出增强的光催化产活性。

原文信息

In-situ grown TiN/N-TiO2composite for enhanced photocatalytic H2evolution activity

Dong LIU1*, Zhuqing YAN2, Peng ZENG1, Haoran LIU2, Tianyou PENG3, Renjie LI2

作者单位:

1. Research Institute of Wuhan University in Shenzhen, Shenzhen 518057, China

2. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

3. Research Institute of Wuhan University in Shenzhen, Shenzhen 518057, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

Abstract:

Titanium nitride (TiN) decorated N-doped titania (N-TiO2) composite (TiN/N-TiO2) is fabricated via anin-situnitridation using a hydrothermally synthesized TiO2and melamine (MA) as raw materials. After the optimization of reaction condition, the resultant TiN/N-TiO2composite delivers a hydrogen evolution activity up to 703 μmol h-1under the full spectrum irradiation of Xe-lamp, which is ca. 2.6 and 32.0 times more than that of TiO2and TiN alone, respectively. To explore the underlying photocatalytic mechanism, the crystal phase, morphology, light absorption, energy band structure, element composition and electrochemical behavior of the composite material are characterized and analyzed, and the results indicate that the superior activity is mainly due to the in-situ formation of plasmonic TiN and N-TiO2with intimate interface contact, which not only extend the spectral response range, but also accelerate the transfer and separation of the TiN’s photoexcited hot charge carrier. The present study provides a fascinating approach to in-situ forming nonmetallic plasmonic material/N-doped TiO2composite photocatalysts for high-efficiency water splitting.

Keywords:

Photocatalytic H2evolution, TiN/N-TiO2composite, plasmonic effect,in-situnitridation

Cite this article

Dong LIU, Zhuqing YAN, Peng ZENG, Haoran LIU, Tianyou PENG, Renjie LI. In situ grown TiN/N-TiO2composite for enhanced photocatalytic H2evolution activity. Front. Energy,https://doi.org/10.1007/s11708-021-0766-8

Frontiers in Energy (SCI,2020 IF 2.709))于2007年创刊,是全英文能源领域综合性学术期刊。主编是翁史烈院士、倪维斗院士、苏义脑院士和彭苏萍院士。执行主编是上海交通大学黄震院士。出版能源领域原创研究论文、综述、科学快报、专题论文等。特别关注可再生能源、未来能源、超常规能源、2030能源、微/纳米能源、能源与环境等全球能源的重大挑战问题。

涉及领域包括(不限于):先进的能源材料,储能与应用,氢能与燃料电池,CO2捕集、封存和利用,太阳能和光伏系统,生物燃料和生物能源,地热能,风能,地热能,潮汐能,核能,传热传质技术,能源与环境,建筑节能及能源经济政策等。

• 国际化的编委会队伍,海外编委约占37%

• 国际化的投审稿平台

• 高度重视学术质量,严格同行评议

• 不限文章长度,无版面费,免费语言润色

• 在线优先出版,论文快速进入SCI数据库。

• 高等教育出版社出版,Springer公司海外发行

在线浏览

http://journal.hep.com.cn/fie(国内免费开放)

https://link.springer.com/journal/11708

在线投稿

https://mc.manuscriptcentral.com/fie

联系我们

刘瑞芹

rqliu@sjtu.edu.cn, (86) 21-62933795

乔晓艳

qiaoxy@hep.com.cn, (86) 10-58556482

《前沿》系列英文学术期刊

由教育部主管、高等教育出版社主办的《前沿》(Frontiers)系列英文学术期刊,于2006年正式创刊,以网络版和印刷版向全球发行。系列期刊包括基础科学、 、工程技术和人文社会科学四个主题,是我国覆盖学科最广泛的英文学术期刊群,其中13种被SCI收录,其他也被A&HCI、Ei、MEDLINE或相应学科国际权威检索系统收录,具有一定的国际学术影响力。系列期刊采用在线优先出版方式,保证文章以最快速度发表。

中国学术前沿期刊网

http://journal.hep.com.cn

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
打印 发E-mail给:
相关新闻 相关论文
图片新闻
大规模调查揭示万余种食物相关微生物 科学家揭示超铁元素核合成新机制
6000年古迹揭示石器时代建筑者的工程智慧 森林可持续经营:给陆地碳汇扩容
>>更多
一周新闻排行
编辑部推荐博文
Baidu
map