来源:科学网 发布时间:2024/7/30 15:33:16
选择字号:
深圳大学和莫纳什大学等三位专家讲述基于液态金属的先进化工、机械及电子技术

直播时间:2024年7月30日(周二)20:00——22:00

直播平台

科学网APP
科学网微博
科学网视频号

【直播简介】

北京时间7月30日晚八点,iCANX Youth Talks第六十六期将隆重开播!本期,我们邀请到了深圳大学Sheng Yan、 莫纳什大学Md. Arifur Rahim、伦敦玛丽女王大学James Kelly三位教授主讲,中南大学Meng Wang、哈佛大学Jian Shu担任研讨嘉宾,南安普顿大学& 新南威尔士大学Shiyang Tang教授担任主持人,期待你一起加入这场知识盛宴。

【嘉宾介绍】

Sheng Yan
深圳大学
Liquid Metal-enabled Soft Microfluidics

[ABSTRACT]

Microfluidics exploits the properties of fluids trapped in micro-scale spaces -the physics behind inkjet printing, DNA microarrays, lab-on-a-chip chemistry and much else - to useful practical effect. In the past decade microfluidics-enabled biomedical devices have shown considerable promise in point-of-care diagnostics and primary research in the biological sciences. However, existing rigid microfluidic platforms are limited in flexibility, which can be addressed by my approaches based on the development of soft microfluidics. In this talk, I will first discuss the liquid metal-based microfabrication techniques for the development of soft microfluidics. Next, I will describe the new applications enabled by soft microfluidics in tunable cell separation and wearable plasmonic biosensors. Finally, I will summarize my research achievements and provide the future research plans.

微流体学利用在微观尺度空间中捕获的流体的特性——喷墨打印、DNA微阵列、芯片实验室化学等背后的物理学原理——以实现实际应用。在过去十年中,微流体学支持的生物医学设备在临床诊断和生物科学基础研究方面显示出巨大的潜力。然而,现有的刚性微流体平台在灵活性方面存在限制,这可以通过我基于软微流体学发展的途径来解决。在本次演讲中,我将首先讨论基于液态金属的微制造技术,用于软微流体学的发展。接下来,我将描述软微流体学在可调细胞分离和可穿戴等离子体生物传感器方面的新应用。最后,我将总结我的研究成果并提供未来的研究计划。

[BIOGRAPHY]

Dr. Sheng Yan is currently an assistant professor at Shenzhen University. He received his Ph.D. in engineering from University of Wollongong, Australia in 2017. From 2018-2020, he conducted his postdoctoral training atHong KongUniversity of Science and Technology and University of Tokyo. He has published more than 80 peer-reviewed articles in various high-impact journals, including Nature Communications, Advanced Science, Journal of Nanobiotechnology, Lab on a Chip, Analytical Chemistry etc. with over 4300 citations and an h-index of 31 (Google Scholar). His research interests include microfluidic biotechnology, liquid metal-based soft electronics, plasmonic biosensors and portable biodevices. His research is awarded by Japan Society for the Promotion of Science Fellowship, Australian Endeavour Research Fellowship, Shenzhen Peacock Talent Fellowship, and Zhujiang Talent Fellowship.

Sheng Yan博士目前是深圳大学的助理教授。他于2017年在澳大利亚伍伦贡大学获得工程学博士学位。2018年至2020年,他在香港科技大学和东京大学进行了博士后培训。他在包括《自然通讯》、《高级科学》、《纳米生物技术杂志》、《芯片实验室》、《分析化学》等在内的多个高影响力期刊上发表了80多篇同行评审文章,引用次数超过4300次,h指数为31(谷歌学术)。他的研究兴趣包括微流体生物技术、基于液态金属的软电子学、等离子体生物传感器和便携式生物设备。他的研究获得了日本学术振兴会奖学金、澳大利亚奋进研究奖学金、深圳孔雀人才奖学金和珠江人才奖学金。

Md. Arifur Rahim
莫纳什大学
Dynamic, Single-Atom Liquid Catalysts

[ABSTRACT]

Functional systems based on room temperature liquid metals (LMs), such as gallium (Ga) and its alloys, have shown enormous potential in the fields ranging from soft electronics to biomedicine, thanks to their unique combination of metallic and liquid-like properties. There is also a recent surge in utilizing these LM features in the field of catalysis, which stems from the known performance enhancement of catalysts in the liquid form compared to their solid-state counterparts and is directly linked with the dynamic nature of liquid atoms. Examples include the mechanocatalytic and triboelectric catalysts based on liquid Ga and their applications for carbon dioxide and biofuel conversion (e.g., Advanced Materials 2021, 2105789 and Chemical Engineering Journal 2023, 452, 139350). However, accessing liquid noble metals such as gold, palladium, and platinum (Pt) in the liquid state at near room temperature, is only beginning to be explored. As these metals only melt at very high temperatures, their practical utilization in the liquid form at moderate to low temperature appears impossible to achieve. However, our recent discovery (Nature Chemistry 2022, 14, 935) enables access to liquid noble metals at low temperatures, where the choice of liquid Ga as a solvent allows such a marvel. The concept is illustrated using Pt dissolved in Ga, to obtain liquid Pt catalyst. Despite the ultralow solubility of Pt in the Ga matrix in the low temperature range, the liquid system can induce extraordinary catalytic performance. Molecular dynamics simulations suggest that Pt dissolved in liquid Ga remains dynamic and atomically dispersed (single-atom). Exploring such systems with binary active metals—tin (Sn) and nickel (Ni)—in liquid Ga, we also demonstrated a system with dynamic, autonomous positioning of Sn, Ni and Ga that enables specific alignments with the reactants, thereby influencing reaction pathways and selectivity (Nature Nanotechnology 2024, 19, 306). This catalyst achieved high purity and selectivity in producing propylene from biofuels. Taken together, the dissolution of catalytic metals in an LM matrix results in dynamic and uniform catalytic sites coupled with different electronic properties that can provide a framework for future applied, theoretical, and fundamental studies.

基于室温液态金属(LMs),如镓(Ga)及其合金的功能系统,在软电子学和生物医学等领域展现出巨大潜力,这得益于它们独特的金属性和液态特性的结合。最近,利用这些液态金属特性在催化领域的应用也急剧增加,这源于液态催化剂相比固态催化剂的已知性能提升,直接与液态原子的动态性质相关。例如,基于液态镓的机械催化和摩擦电催化剂及其在二氧化碳和生物燃料转化中的应用(例如,Advanced Materials 2021, 2105789 和 Chemical Engineering Journal 2023, 452, 139350)。然而,在接近室温的条件下获取液态贵金属如金、钯和铂(Pt)的探索才刚刚开始。由于这些金属仅在非常高的温度下熔化,它们在温和到低温条件下以液态的实际应用似乎难以实现。然而,我们最近的发现(Nature Chemistry 2022, 14, 935)使我们能够在低温下接触到液态贵金属,其中选择液态镓作为溶剂可以实现这一奇迹。通过将铂溶解在镓中来获得液态铂催化剂的概念被用来说明这一点。尽管在低温范围内铂在镓基质中的溶解度极低,但液态系统可以诱导出非凡的催化性能。分子动力学模拟表明,在液态镓中溶解的铂保持动态且原子分散(单原子)。通过探索液态镓中的二元活性金属——锡(Sn)和镍(Ni),我们还展示了一个系统,该系统能够动态、自主地定位Sn、Ni和Ga,实现与反应物的特定排列,从而影响反应路径和选择性(Nature Nanotechnology 2024, 19, 306)。这种催化剂在从生物燃料生产丙烯方面实现了高纯度和选择性。总体而言,将催化金属溶解在液态金属基质中,可以产生动态且均匀的催化位点,并具有不同的电子特性,这可以为未来的应用、理论和基础研究提供框架。

[BIOGRAPHY]

Dr Md. Arifur Rahim obtained his PhD from the Department of Chemical Engineering, The University of Melbourne. Following his PhD, he continued as a postdoctoral fellow in the same group focusing on the coordination chemistry of self-assembled thin films using natural polyphenols and transition metals. He moved to the University of New South Wales (UNSW Sydney) as a research fellow in 2019, where he investigated the chemistry of liquid metals. He is currently a Senior Lecturer at the Department of Chemical and Biological Engineering Monash University, Clayton, Victoria. He was the past recipient of a Discovery Early Career Researcher Award (DECRA) fellowship from the Australian Research Council (ARC). His research career has been focused on contemporary aspects of materials science, physical chemistry, nanomaterials, and catalysis, resulting in ~70 peer-reviewed publications, an h-index of 32, and over one million AUD in research funding to date. His research findings have appeared in highly prestigious chemical and materials science journals such as Nature Chemistry, Nature Nanotechnology, Angewandte Chemie, Advanced Materials, Advanced Sciences, and ACS Nano.

Md. Arifur Rahim博士在墨尔本大学化学工程系获得了博士学位。完成博士学位后,他继续在同组担任博士后研究员,专注于使用天然多酚和过渡金属的自组装薄膜的配位化学。2019年,他作为研究助理前往新南威尔士大学(UNSW Sydney),在那里他研究了液态金属的化学。他目前是莫纳什大学化学与生物工程系的高级讲师,位于维多利亚州克莱顿。他曾获得澳大利亚研究理事会(ARC)的早期职业研究员发现奖(DECRA)奖学金。他的研究生涯一直专注于材料科学、物理化学、纳米材料和催化的当代方面,发表了约70篇同行评审的出版物,h指数为32,迄今为止获得了超过一百万美元的科研资金。他的研究成果已发表在诸如Nature Chemistry、Nature Nanotechnology、Angewandte Chemie、Advanced Materials、Advanced Sciences和ACS Nano等享有盛誉的化学和材料科学期刊上。

James Kelly
伦敦玛丽女王大学
Reconfigurable High FrequencyCircuits and Antennas

[ABSTRACT]

High frequency electronics have a wide and growing range of applications. They are used in communications systems (e.g. cellular radio, WiFi, Bluetooth, contactless payment); navigation systems (e.g. GPS, radar); and sensors (e.g. RFID tags for asset tracking, smart skins, ingestible electronic microcapsules).

The performance of high frequency electronic systems is typically fixed at the time of manufacture. This means that they are unable to respond to changes: in the operating environment, in interference levels, user demand, or economic market conditions. Reconfigurable high frequency electronics, on the other hand, can respond to all of these things.

The talk will briefly introduce the topic of reconfigurable high frequency electronics. The talk will then discuss some of the highlights of Dr James Kelly’s research, over the past 20-years. It will explain how one research project can inspire another and how that can lead and feed into new grants and industry contracts.

高频电子设备有着广泛且不断增长的应用领域。它们被用于通信系统(例如,蜂窝无线电、WiFi、蓝牙、非接触式支付)、导航系统(例如,GPS、雷达)以及传感器(例如,用于资产追踪的RFID标签、智能皮肤、可摄入电子微胶囊)。

高频电子系统的性能通常在制造时就已确定,这意味着它们无法响应变化:在操作环境、干扰水平、用户需求或经济市场条件方面的变化。另一方面,可重构的高频电子设备能够响应所有这些变化。

本次演讲将简要介绍可重构高频电子设备的主题。然后,演讲将讨论James Kelly博士在过去20年的研究亮点。它将解释一个研究项目如何激发另一个项目,以及这如何导致新的资助和工业合同。

[BIOGRAPHY]

James R. Kelly was born in the city of Derby which is located in Derbyshire, England. He received the Master's degree in electronic and electrical engineering (2002) and the Ph.D. degree in microwave filters (2007) from Loughborough University, Loughborough, Leicestershire, U.K..

From 1999 to 2000 he worked, as a trainee Engineer, for the International Rail Vehicle Consultancy, Interfleet Technology. In 2001 he worked as a trainee within the Rolls-Royce Strategic Research Centre. After completing his PhD in 2007 he worked as a post doc. at Loughborough University, as well as the Universities of Birmingham, and Sheffield. From 2011 until 2012, he accepted a position as an Engineer at Airbus Defence and Space Ltd (then EADS Astrium). In 2012 he returned to academia to work as a post doc. at Durham University U.K.. Later that year he accepted a Lectureship at Anglia Ruskin University in Cambridge, U.K.. In 2013 he moved to the University of Surrey to take up a Lectureship position. He is currently a Senior Lecturer in Reconfigurable Microwave Circuits and Antennas within the School of Electronic Engineering and Computer Science at Queen Mary University of London (QMUL).
He has published over 150 peer-reviewed papers. His research focuses on using new electronic materials to improve the performance of high frequency circuits and antennas. He has conducted extensive research on reconfigurable antennas and reconfigurable feed networks for antennas. He has also published research on filters, metamaterials, and ultra-wideband antennas.

James R. Kelly出生于英格兰德比郡的德比市。他在拉夫堡大学获得了电子与电气工程硕士学位(2002年)和微波滤波器博士学位(2007年),拉夫堡位于英国莱斯特郡。

从1999年到2000年,他作为见习工程师为国际铁路车辆咨询公司Interfleet Technology工作。2001年,他在劳斯莱斯战略研究中心担任见习生。在2007年完成博士学位后,他在拉夫堡大学以及伯明翰大学和谢菲尔德大学担任博士后。2011年至2012年,他接受了空中客车防务与航天有限公司(当时是EADS Astrium)的工程师职位。2012年,他回到学术界,在英国达勒姆大学担任博士后。同年晚些时候,他接受了剑桥安格利亚鲁斯金大学的讲师职位。2013年,他转到萨里大学担任讲师。他目前是伦敦玛丽女王大学电子工程与计算机科学学院的可重构微波电路和天线高级讲师。

他发表了超过150篇同行评审的论文。他的研究集中在使用新的电子材料来提高高频电路和天线的性能。他对可重构天线和天线的可重构馈电网络进行了广泛的研究。他还发表了关于滤波器、超材料和超宽带天线的研究。

【主持人】

Shiyang Tang
南安普顿大学& 新南威尔士大学

【研讨嘉宾】

Meng Wang
中南大学
Jian Shu
哈佛大学

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
打印 发E-mail给:
相关新闻 相关论文
图片新闻
实验室培养干细胞或成为癌症治疗突破点 大规模调查揭示万余种食物相关微生物
科学家揭示超铁元素核合成新机制 6000年古迹揭示石器时代建筑者的工程智慧
>>更多
一周新闻排行
编辑部推荐博文
Baidu
map