作者:刘霞 来源:科技日报 发布时间:2024/6/28 12:30:31
选择字号:
新训练可减少AI系统社会偏见

 

来自美国俄勒冈州立大学工程学院和Adobe公司的科学家携手,开发出一种用于训练人工智能(AI)的新技术FairDeDup。该技术不仅能降低训练成本,而且有望减少AI系统的社会偏见。研究团队已经在近期于美国西雅图举行的IEEE/CVF计算机视觉和模式识别会议大会上介绍了FairDeDup算法。该会议是由电子电气工程师学会(IEEE)计算机协会和计算机视觉基金会(CVF)共同主办的全球顶级学术会议。

图片来源:物理学家组织网

FairDeDup是“公平重复数据消除”的缩写,指从用于训练AI系统的数据中删除冗余信息,从而大幅降低训练成本。研究人员表示,之所以将新方法命名为FairDeDup,也是因为它基于此前一种具有成本效益的方法SemDeDup。SemDeDup可以用更少的资源对AI进行训练。但这一过程会强化AI的社会偏见。在最新研究中,他们通过引入公平机制,对SemDeDup进行了改进,FairDeDup因此面世。

FairDeDup的工作原理是:通过一种名为“修剪”的过程,细化从网络上收集的图像字幕数据集。“修剪”指选择能代表整个数据集的数据子集。该工具可以感知内容,并决定保留或删除哪些数据。结果显示,FairDeDup删除了冗余数据,同时结合了可控的、人为定义的多样性维度,从而减少偏见。

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
《自然》(20241121出版)一周论文导读 清华这位院士搭建了一座室外地质博物园
科学家完整构建火星空间太阳高能粒子能谱 “糖刹车”基因破除番茄产量与品质悖论
>>更多
 
一周新闻排行
 
编辑部推荐博文
 
Baidu
map