当前位置:科学网首页 > 小柯机器人 >详情
科学家揭示监测量子动力学的重启不确定关系
作者:小柯机器人 发布时间:2025/1/4 23:56:56

近日,以色列巴伊兰大学的Eli Barkai及其研究团队去的一项新进展。经过不懈努力,他们揭示监测量子动力学的重启不确定关系。相关研究成果已于2025年1月2日在国际知名学术期刊《美国科学院院刊》上发表。

该研究团队在受监测的量子动力学中的重启背景下,引入了一种时间-能量不确定性关系。先前的研究已经证实,表示返回到初始状态所需时间的平均复发时间被量化为采样时间的整数倍,并在共振点处展现出点态不连续跃迁。

这项研究发现,实验室实验中由有限数据收集时间跨度驱动的重启机制的自然运用,会导致平均复发时间跃迁的展宽效应。研究人员提出的不确定性关系捕捉到了这些现象的本质,将共振点附近平均到达时间的展宽与量子系统的本征能量以及复发时间的波动联系起来。这一不确定性关系还通过在国际商业机器公司(IBM)的量子计算机上进行的远程实验得到了验证。这项工作不仅增进了研究人员对量子测量和动力学相关基本方面的理解,还为设计包含中途测量的高效量子算法提供了实用见解。

附:英文原文

Title: Restart uncertainty relation for monitored quantum dynamics

Author: Yin, Ruoyu, Wang, Qingyuan, Tornow, Sabine, Barkai, Eli

Issue&Volume: 2025-1-2

Abstract: We introduce a time-energy uncertainty relation within the context of restarts in monitored quantum dynamics. Previous studies have established that the mean recurrence time, which represents the time taken to return to the initial state, is quantized as an integer multiple of the sampling time, displaying pointwise discontinuous transitions at resonances. Our findings demonstrate that the natural utilization of the restart mechanism in laboratory experiments, driven by finite data collection time spans, leads to a broadening effect on the transitions of the mean recurrence time. Our proposed uncertainty relation captures the underlying essence of these phenomena, by connecting the broadening of the mean hitting time near resonances, to the intrinsic energies of the quantum system and to the fluctuations of recurrence time. Our uncertainty relation has also been validated through remote experiments conducted on an International Business Machines Corporation (IBM) quantum computer. This work not only contributes to our understanding of fundamental aspects related to quantum measurements and dynamics, but also offers practical insights for the design of efficient quantum algorithms with mid-circuit measurements.

DOI: 10.1073/pnas.2402912121

Source: https://www.pnas.org/doi/abs/10.1073/pnas.2402912121

期刊信息
PNAS:《美国科学院院刊》,创刊于1914年。隶属于美国科学院,最新IF:12.779
官方网址:https://www.pnas.org

Baidu
map