研究团队提出了一个北冰洋动力学降尺度数据集,该数据集来自全球海洋—海冰模式FESOM2,在北极地区的区域精细水平分辨率为4.5km,该分辨率由气候模型得出的偏差校正表面作用力所驱动。该数据集包括SSP245和SSP585情景115年(1900-2014)的历史模拟和两个86年的未来预测模拟(2015-2100)。
历史模拟表明,与CMIP6(耦合模式比对项目第6阶段)气候模式相比,温度、盐度和海冰厚度的偏差大大减少。在气候模式模拟中发现的大西洋水层表示中的常见偏差在数据集中也显著减少。研究结果强调,该数据集作为北冰洋气候变化评估和科学研究的重要长期数据库,为科学界提供了有价值的信息。
据介绍,北极是地球上最易受气候变化影响的地区之一。然而,用于气候研究的北冰洋原位长期观测相对较少,目前的气候模型在北冰洋模拟中表现出明显的偏差。
附:英文原文
Title: Arctic Ocean dynamical downscaling data for understanding past and future climate change
Author: Qi Shu, Qiang Wang, Yan He, Zhenya Song, Gui GAO, Hailong LIU, Shizhu Wang, Rongrong Pan, Fangli Qiao
Issue&Volume: 2025-01-02
Abstract: The Arctic is one of Earth’s regions highly susceptible to climate change. However, in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and current climate models exhibit notable biases in Arctic Ocean simulations. Here we present an Arctic Ocean dynamical downscaling dataset, obtained from the global ocean-sea ice model FESOM2 with regionally refined horizonal resolution of 4.5 km in the Arctic region, which is driven by bias-corrected surface forcings derived from a climate model. The dataset includes 115 years (1900–2014) of historical simulations and two 86-year future projection simulations (2015–2100) for the scenarios SSP245 and SSP585. The historical simulations demonstrate substantially reduced biases in temperature, salinity and sea ice thickness compared to CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. Common biases in the representation of Atlantic Water layer found in climate model simulations are also markedly reduced in the dataset. Serving as a crucial long-term data source for climate change assessments and scientific research for the Arctic Ocean, this dataset provides valuable information for the scientific community.
DOI: 10.1007/s00376-024-5259-3
Source: http://www.iapjournals.ac.cn/aas/article/doi/10.1007/s00376-024-5259-3
Advances in Atmospheric Sciences:《大气科学进展》,创刊于1984年。隶属于科学出版社,最新IF:5.8
官方网址:http://www.iapjournals.ac.cn/aas/
投稿链接:https://mc03.manuscriptcentral.com/aasiap