美国加州大学Karunesh Ganguly团队近期取得重要工作进展,他们研究提出,短暂休息期间的神经集群重激活能驱动序列动作的快速学习。相关研究成果2025年1月15日在线发表于《自然》杂志上。
据介绍,在运动学习过程中,练习过程中的休息被认为有助于行为优化。尽管传统上对这一过程的研究集中在持续数小时至数天的长时间休息上,但近期针对人类的研究表明,在早期运动序列学习期间,最显著的快速性能提升出现在持续数秒至数分钟的极短暂休息之后。然而,短暂休息后促进性能提升的确切因果神经机制仍不清楚。
研究人员记录了猕猴在执行穿插短暂休息的视觉 - 运动序列学习任务时,其运动皮层中的神经群体活动。研究人员发现,与任务相关的神经共同放电模式在短暂休息期间会重新激活。重新激活的速率和内容能够预测后续性能提升的幅度和模式。研究人员发现,性能提升和重新激活与皮层涟漪(80-120 Hz振荡)呈正相关,但与β波爆发(13-30 Hz振荡)呈负相关,在快速学习阶段趋于平稳后,β波爆发最终在休息期间占据主导。随后,研究人员对运动皮层施加20 Hz的硬膜外交流电刺激(ACS),这以相位特异性和剂量依赖性的方式降低了重新激活的速率。20 Hz的ACS也消除了性能提升。
总之,这一研究表明,短暂休息期间任务相关神经群体的重新激活是后续性能提升的因果驱动因素。β波爆发与这一过程竞争,可能是为了维持稳定的表现。
附:英文原文
Title: Ensemble reactivations during brief rest drive fast learning of sequences
Author: Griffin, Sandon, Khanna, Preeya, Choi, Hoseok, Thiesen, Katherina, Novik, Lisa, Morecraft, Robert J., Ganguly, Karunesh
Issue&Volume: 2025-01-15
Abstract: During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days1,2,3,4,5,6, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes7,8,9,10. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood. Here we recorded neural ensemble activity in the motor cortex of macaques while they performed a visuomotor sequence learning task interspersed with brief breaks. We found that task-related neural cofiring patterns were reactivated during brief breaks. The rate and content of reactivations predicted the magnitude and pattern of subsequent performance gains. Of note, we found that performance gains and reactivations were positively correlated with cortical ripples (80–120Hz oscillations) but anti-correlated with β bursts (13–30Hz oscillations), which ultimately dominated breaks after the fast learning phase plateaued. We then applied 20Hz epidural alternating current stimulation (ACS) to motor cortex, which reduced reactivation rates in a phase-specific and dose-dependent manner. Notably, 20Hz ACS also eliminated performance gains. Overall, our results indicate that the reactivations of task ensembles during brief breaks are causal drivers of subsequent performance gains. β bursts compete with this process, possibly to support stable performance.
DOI: 10.1038/s41586-024-08414-9
Source:https://www.nature.com/articles/s41586-024-08414-9
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html
