当前位置:科学网首页>小柯机器人>详情
科学家开发出通过超灵敏加权可见刺激拉曼散射进行的无标记细胞代谢纳米成像
作者: 小柯机器人发布时间:2025/1/18 0:47:58

美国波士顿大学Ji-Xin Cheng团队开发出,通过超灵敏加权可见刺激拉曼散射进行的无标记细胞代谢纳米成像。这一研究成果于2025年1月16日在线发表在国际学术期刊《自然—方法学》上。

研究人员提出了超灵敏加权可见刺激拉曼散射(URV-SRS),这是一种无标记的振动成像技术,用于细胞内代谢物的多重纳米成像。研究人员开发了一种可见SRS显微镜,并通过广泛的脉冲技术提高了检测限至约4000个分子,同时引入了自监督的多代理去噪器,将SRS中的非独立噪声抑制了超过7.2 dB,从而实现了比近红外SRS高50倍的灵敏度提升。

利用这种增强的灵敏度,研究人员采用傅里叶加权放大了以往被噪声淹没的亚100纳米空间频率。通过傅里叶环形相关验证,研究人员在细胞成像中实现了86纳米的横向分辨率。研究人员可视化了与病毒复制相关的代谢纳米结构重编程,以及工程化细菌中的亚细胞脂肪酸合成,从而展示了该技术在纳米尺度代谢组学中的应用能力。

据了解,细胞代谢的超分辨率成像,受到小分子代谢物与荧光染料的不兼容,以及成像质谱分辨率限制的制约。

附:英文原文

Title: Label-free nanoscopy of cell metabolism by ultrasensitive reweighted visible stimulated Raman scattering

Author: Lin, Haonan, Seitz, Scott, Tan, Yuying, Lugagne, Jean-Baptiste, Wang, Le, Ding, Guangrui, He, Hongjian, Rauwolf, Tyler J., Dunlop, Mary J., Connor, John H., Porco, John A., Tian, Lei, Cheng, Ji-Xin

Issue&Volume: 2025-01-16

Abstract: Super-resolution imaging of cell metabolism is hindered by the incompatibility of small metabolites with fluorescent dyes and the limited resolution of imaging mass spectrometry. We present ultrasensitive reweighted visible stimulated Raman scattering (URV-SRS), a label-free vibrational imaging technique for multiplexed nanoscopy of intracellular metabolites. We developed a visible SRS microscope with extensive pulse chirping to improve the detection limit to ~4,000 molecules and introduced a self-supervised multi-agent denoiser to suppress non-independent noise in SRS by over 7.2dB, resulting in a 50-fold sensitivity enhancement over near-infrared SRS. Leveraging the enhanced sensitivity, we employed Fourier reweighting to amplify sub-100-nm spatial frequencies that were previously overwhelmed by noise. Validated by Fourier ring correlation, we achieved a lateral resolution of 86nm in cell imaging. We visualized the reprogramming of metabolic nanostructures associated with virus replication in host cells and subcellular fatty acid synthesis in engineered bacteria, demonstrating its capability towards nanoscopic spatial metabolomics.

DOI: 10.1038/s41592-024-02575-1

Source:https://www.nature.com/articles/s41592-024-02575-1

期刊信息

Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:47.99
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex

Baidu
map