当前位置:科学网首页 > 小柯机器人 >详情
科学家实现魔法波长光镊中分子的长寿命纠缠
作者:小柯机器人 发布时间:2025/1/17 15:24:37

近日,英国杜伦大学的Simon L. Cornish及其研究团队取得一项新进展。经过不懈努力,他们实现魔法波长光镊中分子的长寿命纠缠。相关研究成果已于2025年1月15日在国际权威学术期刊《自然》上发表。

本研究表明,通过利用旋转魔法光镊构建一个极度受控的环境,研究人员可以利用可探测的赫兹量级相互作用实现分子对之间的长寿命纠缠。研究人员制备了两分子贝尔态,其保真度为0.924-0.016+0.013,受限于可探测的泄漏误差。在校正这些误差后,保真度达到0.976-0.016+0.014

研究人员证明,秒量级的纠缠寿命仅受这些误差限制,为量子增强测量、超冷化学以及旋转态在量子模拟、量子计算和量子存储器中的应用提供了研究机会。将精确的量子控制扩展到复杂的分子系统,将使量子科学的多个领域能够利用其额外的自由度。

据悉,实现粒子的量子控制和纠缠对于推动量子技术和基础科学的发展至关重要。在这一领域,多种系统已经取得了显著进展。在此背景下,超冷极性分子因其与振动和转动相关的更复杂内部结构以及存在长程相互作用,而提供了新颖且独特的机会。然而,这些特性也使分子对环境高度敏感,从而影响其在某些应用中的相干性和实用性。

附:英文原文

Title: Long-lived entanglement of molecules in magic-wavelength optical tweezers

Author: Ruttley, Daniel K., Hepworth, Tom R., Guttridge, Alexander, Cornish, Simon L.

Issue&Volume: 2025-01-15

Abstract: Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions. However, the same properties make molecules highly sensitive to their environment, affecting their coherence and utility in some applications. Here we show that by engineering an exceptionally controlled environment using rotationally magic optical tweezers, we can achieve long-lived entanglement between pairs of molecules using detectable hertz-scale interactions. We prepare two-molecule Bell states with fidelity 0.924-0.016+0.013, limited by detectable leakage errors. When correcting for these errors, the fidelity is 0.976-0.016+0.014. We show that the second-scale entanglement lifetimes are limited solely by these errors, providing opportunities for research in quantum-enhanced metrology, ultracold chemistry and the use of rotational states in quantum simulation, quantum computation and as quantum memories. The extension of precise quantum control to complex molecular systems will enable their additional degrees of freedom to be exploited across many domains of quantum science.

DOI: 10.1038/s41586-024-08365-1

Source: https://www.nature.com/articles/s41586-024-08365-1

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


Baidu
map