近日,澳大利亚新南威尔士大学电气工程与通信学院的Andrea Morello及其研究团队取得一项新进展。经过不懈努力,他们实现硅中核自旋量子的薛定谔态。相关研究成果已于2025年1月14日在国际知名学术期刊《自然—物理学》上发表。
该研究团队演示了如何使用嵌入硅纳米电子器件中的锑原子的自旋-7/2核来创建和操控薛定谔猫态。研究人员采用多频率控制方案来产生保持量子比特对称性的自旋旋转,并为编码在薛定谔猫态中的量子比特构成了逻辑泡利操作。这项研究工作证明了使用该研究可扩展、可制造的半导体平台来制备和控制非经典资源态的能力,这是量子信息处理和量子纠错应用的前提条件。
据悉,高维量子系统是量子信息处理中的宝贵资源。它们可用于编码可纠错的逻辑量子比特,这一点已在微波腔或囚禁离子的运动模式中使用连续变量状态得到了证明。例如,高维系统可用于实现“薛定谔猫”态,这种态是相距甚远的相干态的叠加,可用于在大尺度上展示量子效应。最近的提议建议在高自旋原子核中编码量子比特,这些原子核是有限维系统,能够承载连续变量代码的硬件高效版本。
附:英文原文
Title: Schrdinger cat states of a nuclear spin qudit in silicon
Author: Yu, Xi, Wilhelm, Benjamin, Holmes, Danielle, Vaartjes, Arjen, Schwienbacher, Daniel, Nurizzo, Martin, Kringhj, Anders, Blankenstein, Mark R. van, Jakob, Alexander M., Gupta, Pragati, Hudson, Fay E., Itoh, Kohei M., Murray, Riley J., Blume-Kohout, Robin, Ladd, Thaddeus D., Anand, Namit, Dzurak, Andrew S., Sanders, Barry C., Jamieson, David N., Morello, Andrea
Issue&Volume: 2025-01-14
Abstract: High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, which has been demonstrated using continuous-variable states in microwave cavities or the motional modes of trapped ions. For example, high-dimensional systems can be used to realize ‘Schrdinger cat’ states, which are superpositions of widely displaced coherent states that can be used to illustrate quantum effects at large scales. Recent proposals have suggested encoding qubits in high-spin atomic nuclei, which are finite-dimensional systems that can host hardware-efficient versions of continuous-variable codes. Here we demonstrate the creation and manipulation of Schrdinger cat states using the spin-7/2 nucleus of an antimony atom embedded in a silicon nanoelectronic device. We use a multi-frequency control scheme to produce spin rotations that preserve the symmetry of the qudit, and we constitute logical Pauli operations for qubits encoded in the Schrdinger cat states. Our work demonstrates the ability to prepare and control non-classical resource states, which is a prerequisite for applications in quantum information processing and quantum error correction, using our scalable, manufacturable semiconductor platform.
DOI: 10.1038/s41567-024-02745-0
Source: https://www.nature.com/articles/s41567-024-02745-0