设计具有优化的协同双金属反应中心的普鲁士蓝类似物(PBA)阴极,是设计高能钠离子电池(SIB)的典型策略。然而,这些阴极通常存在容量衰减快和反应动力学缓慢的问题。为了解决上述问题,该研究采用“酸辅助合成”的方法制备了一系列,早期过渡金属(ETM) -晚期过渡金属(LTM)基PBA (Fe-VO、Fe-TiO、Fe-ZrO、Co-VO和Fe-Co-VO)正极材料。
作为范例,FeVO-PBA (FV)提供了卓越的倍率能力(分别在0.5℃和100℃下为148.9和56.1 mAh/g),在30,000次循环中具有卓越的循环稳定性,高能量密度(全电池为259.7 Wh/kg)和宽工作温度范围(60 - 80°C)。
原位/非原位技术和密度泛函理论计算揭示了,FeVO-PBA阴极在循环过程中的准零应变和多电子氧化还原机制,支持其较高的比容量和稳定的循环。Fe和V之间的d-d电子补偿效应增强了氧化还原反应的可逆性和动力学,同时提高了FeVO-PBA阴极的电子导电性和结构稳定性。本研究为合理设计具有双金属反应中心的高性能SIB正极材料,开辟了新的道路。
附:英文原文
Title: Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries
Author: Zhongxin Jing, Lingtong Kong, Muhammad Mamoor, Lu Wang, Bo Zhang, Bin Wang, Yanjun Zhai, Fengbo Wang, Guangmeng Qu, Yueyue Kong, Dedong Wang, Liqiang Xu
Issue&Volume: January 14, 2025
Abstract: Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)–late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an “acid-assisted synthesis” strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.9 and 56.1 mAh/g under 0.5 and 100 C, respectively), remarkable cycling stability over 30,000 cycles, high energy density (259.7 Wh/kg for the full cell), and a wide operation-temperature range (60–80 °C). In situ/ex situ techniques and density functional theory calculations reveal the quasi-zero-strain and multielectron redox mechanisms of the FeVO-PBA cathode during cycling, supporting its higher specific capacity and stable cycling. It is considered that the d–d electron compensation effect between Fe and V enhanced the reversibility and kinetics of redox reactions and simultaneously improved the electronic conductivity and structural stability of the FeVO-PBA cathode. This work may pave a new way for the rational design of high-performance cathode materials with bimetallic reaction centers for SIBs.
DOI: 10.1021/jacs.4c16031
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c16031
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000