潍坊学院姜在勇团队报道了g-C3N4 S型同质结通过范德华界面调节的本征聚合调整,增强光催化析氢和CO2还原。相关研究成果于2025年1月9日发表在国际顶尖学术期刊《德国应用化学》。
有效的S型同质结依赖于能带结构的精确调节,和有利电荷迁移界面的构建。
该文中,研究人员通过自组装超分子前体的精细聚合来调节g-C3N4的电子结构性质。实验和DFT结果表明,本征带隙和表面电子特性都得到了调整,导致在本征范德华力的作用下形成了原位重建的同质结界面。由g-C3N4纳米点和超薄g-C3N4纳米粒子组成的同质结催化剂表现出显著的S型载流子分离机制,提高了电子和空穴的利用率。因此,在AM 1.5光照(~100 mW/cm2)下,g-C3N4同质结光催化剂实现了580μmol h-1的显著析氢速率。
此外,在CO2还原中观察到CH4选择性的逆转,产生80.30μmol g-1 h-1,选择性为96.86%,而块状g-C3N4的性能仅产生2.22μmol g-1 h-1,CH4选择性为15.69%。这些发现不仅突显了g-C3N4同质结光催化剂在氢气生产和二氧化碳减排方面的巨大潜力,还为优化g-C3N4的结构特性提出了一种优越有效的策略,这对光催化反应的设计至关重要。
附:英文原文
Title: g-C3N4 S-Scheme Homojunction through van der Waals Interface Regulation by Intrinsic Polymerization Tailoring for Enhanced Photocatalytic H2 Evolution and CO2 Reduction
Author: Xianglin Zhu, Enlong Zhou, Xishi Tai, Huibin Zong, Jianjian Yi, Zhimin Yuan, Xingling Zhao, Peng Huang, Hui Xu, Zaiyong Jiang
Issue&Volume: 2025-01-09
Abstract: The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g-C3N4 nanodots and ultra-thin g-C3N4 nanoflakes, exhibited a significant S-scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm2), the g-C3N4 homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 μmol h-1. Furthermore, a reversed CH4 selectivity in CO2 reduction was observed, yielding 80.30 μmol g1 h1 with a selectivity of 96.86%, in contrast to the performance of bulk g-C3N4, which produced only 2.22 μmol g1 h1 with the 15.69% CH4 selectivity. These findings not only highlight the significant potential of the g-C3N4 homojunction photocatalyst for hydrogen production and CO2 reduction but also propose a superior and effective strategy for optimizing the structural properties of g-C3N4, which are crucial for the design of photocatalytic reactions.
DOI: 10.1002/anie.202425439
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202425439
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx