近日,武汉大学的方国家&柯维俊及其研究小组与瑞士洛桑联邦理工学院的Michael Gratzel等人合作并取得一项新进展。经过不懈努力,他们成功抑制了高效钙钛矿太阳能电池的广角光损失和非辐射复合。相关研究成果已于2025年1月9日在国际知名学术期刊《自然—光子学》上发表。
该研究团队提出一种通用策略来解决这一问题,即在玻璃基底上涂覆高度分散的氟掺杂氧化锡纳米片(NP-FTO)。然后,通过原子层沉积技术沉积一层薄薄的SnO2,并覆盖上SnO2量子点,形成电子选择性同质结。系统的机理研究表明,NP-FTO具有卓越的全向光子捕获能力,并且对钙钛矿结晶产生有益影响。这些综合效应使得n–i–p结构钙钛矿太阳能电池在广角入射光照射下,短路电流密度、开路电压和填充因子均得到显著提升。
在AM1.5G光照下,表现最佳的钙钛矿太阳能电池实现了26.4%的显著功率转换效率(经认证为25.9%)。此外,这些器件还表现出卓越的稳定性,在模拟太阳强度下进行1200小时的光照浸泡,并同时进行最大功率点跟踪后,仍保留了95%的初始功率转换效率。更重要的是,NP-FTO的有益效果也适用于1.77eV宽带隙的p–i–n结构钙钛矿太阳能电池,从而能够制备出最佳功率转换效率为28.2%的全钙钛矿叠层太阳能电池。
据悉,在钙钛矿太阳能电池(PSCs)中,表面反射和非辐射复合会阻碍载流子的产生和提取,从而造成能量损失。随着日光入射角在一天中的变化,这些损失会降低器件在实际应用中的效率。
附:英文原文
Title: Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells
Author: Ge, Yansong, Zheng, Likai, Wang, Haibing, Gao, Jing, Yao, Fang, Wang, Chen, Li, Guang, Guan, Hongling, Wang, Shuxin, Cui, Hongsen, Ye, Feihong, Shao, Wenlong, Zheng, Zhimiao, Yu, Zixi, Wang, Jiahao, Xu, Zuxiong, Dai, Chenjie, Ma, Yihan, Yang, Yi, Guan, Zhiqiang, Liu, Yong, Wang, Jianbo, Lin, Qianqian, Li, Zhongyang, Li, Xiong, Ke, Weijun, Grtzel, Michael, Fang, Guojia
Issue&Volume: 2025-01-09
Abstract: Surface reflections and non-radiative recombinations create energy losses in perovskite solar cells (PSCs) by hindering the generation and extraction of carriers. These losses can reduce device efficiency in practical applications as the incident angle of sunlight varies throughout the day. Here we introduce a universal strategy to address this issue by coating glass substrates with highly distributed nanoplates of fluorine-doped tin oxide (NP-FTO). An electron-selective homojunction is then formed with a thin layer of SnO2 deposited by atomic layer deposition covered with SnO2 quantum dots. Systematic mechanistic studies reveal the exceptional ability of NP-FTO to harvest photons omnidirectionally and its beneficial influence on perovskite crystallization. These combined effects result in substantial improvements in the short-circuit current density, open-circuit voltage and fill factor of n–i–p PSCs under wide-angle incident light illumination. The best-performing PSC achieves a remarkable power conversion efficiency (PCE) of 26.4% (certified 25.9%) under AM1.5G illumination. The devices also show exceptional stability, retaining 95% of their initial PCE after 1,200hours of light soaking under simulated solar intensity with maximum power point tracking. Moreover, the beneficial effects of NP-FTO are also applicable to 1.77eV wide-bandgap PSCs with a p–i–n structure, enabling the fabrication of all-perovskite tandem solar cells with a best PCE of 28.2%.
DOI: 10.1038/s41566-024-01570-4
Source: https://www.nature.com/articles/s41566-024-01570-4