当前位置:科学网首页 > 小柯机器人 >详情
预防心血管危险方程降低了他汀类药物和抗高血压的治疗资格
作者:小柯机器人 发布时间:2024/7/31 15:18:25

美国哈佛医学院Arjun K. Manrai团队研究了在美国心脏协会预防心血管危险方程中,他汀类药物和抗高血压治疗资格的预测变化。2024年7月29日出版的《美国医学会杂志》发表了这项成果。

自2013年以来,美国心脏病学会(ACC)和美国心脏协会(AHA)建议使用合并队列方程(PCES)来估计动脉粥样硬化性心血管疾病(ASCVD)的10年风险。一个AHA科学咨询小组最近开发了心血管疾病事件(PREVENT)风险预测方程,其中纳入了肾脏测量,取消了种族作为输入项,并改进了当代人群的校准。众所周知,PREVENT产生的ASCVD风险预测低于PCES产生的风险,但潜在的临床影响尚未量化。

为了评估在将预防方程应用于现有的ACC和AHA指南时,在风险分类、治疗资格或临床预后方面会发生变化的美国成年人的数量,研究组利用2011年至2020年3月国家卫生和营养检查调查的7765名30至79岁美国成年人的国家代表跨部门样本,答复率在47%至70%之间。主要结局为预测的10年ASCVD风险、ACC和AHA风险分类、静态或抗高血压治疗的资格以及心肌梗塞或中风的预测发生率的差异。

在7765名30至79岁的美国成年人(平均年龄53岁;51.3%为女性)的国家代表性样本中,据估计,使用预防方程将使大约一半的美国成年人重新分类为较低的ACC和AHA风险类别(53.0%[95%CI,51.2%-54.8%]),很少有美国成年人分类为较高的风险类别(0.41%[95%CI,0.25%-0.62%])。接受或建议预防性治疗的美国成年人人数估计将减少1430万(95%可信区间,1260万至1590万)用于他汀类药物治疗,262万(95%可信区间,202万至321万)用于抗高血压治疗。这项研究估计,在10年多的时间里,这些治疗资格的下降可能导致107000例额外心肌梗塞或中风病例。男性资格的变化影响为女性两倍,黑人成年人的比例高于白人成年人。

研究结果表明,通过分配较低的ASCVD风险预测,将预防方程应用于现有的治疗阈值可能会降低1580万美国成年人接受他汀类药物和抗高血压治疗的资格。

附:英文原文

Title: Projected Changes in Statin and Antihypertensive Therapy Eligibility With the AHA PREVENT Cardiovascular Risk Equations

Author: James A. Diao, Ivy Shi, Venkatesh L. Murthy, Thomas A. Buckley, Chirag J. Patel, Emma Pierson, Robert W. Yeh, Dhruv S. Kazi, Rishi K. Wadhera, Arjun K. Manrai

Issue&Volume: 2024-07-29

Abstract:

Importance  Since 2013, the American College of Cardiology (ACC) and American Heart Association (AHA) have recommended the pooled cohort equations (PCEs) for estimating the 10-year risk of atherosclerotic cardiovascular disease (ASCVD). An AHA scientific advisory group recently developed the Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations, which incorporated kidney measures, removed race as an input, and improved calibration in contemporary populations. PREVENT is known to produce ASCVD risk predictions that are lower than those produced by the PCEs, but the potential clinical implications have not been quantified.

Objective  To estimate the number of US adults who would experience changes in risk categorization, treatment eligibility, or clinical outcomes when applying PREVENT equations to existing ACC and AHA guidelines.

Design, Setting, and Participants  Nationally representative cross-sectional sample of 7765 US adults aged 30 to 79 years who participated in the National Health and Nutrition Examination Surveys of 2011 to March 2020, which had response rates ranging from 47% to 70%.

Main Outcomes and Measures  Differences in predicted 10-year ASCVD risk, ACC and AHA risk categorization, eligibility for statin or antihypertensive therapy, and projected occurrences of myocardial infarction or stroke.

Results  In a nationally representative sample of 7765 US adults aged 30 to 79 years (median age, 53 years; 51.3% women), it was estimated that using PREVENT equations would reclassify approximately half of US adults to lower ACC and AHA risk categories (53.0% [95% CI, 51.2%-54.8%]) and very few US adults to higher risk categories (0.41% [95% CI, 0.25%-0.62%]). The number of US adults receiving or recommended for preventive treatment would decrease by an estimated 14.3 million (95% CI, 12.6 million-15.9 million) for statin therapy and 2.62 million (95% CI, 2.02 million-3.21 million) for antihypertensive therapy. The study estimated that, over 10 years, these decreases in treatment eligibility could result in 107000 additional occurrences of myocardial infarction or stroke. Eligibility changes would affect twice as many men as women and a greater proportion of Black adults than White adults.

Conclusion and Relevance  By assigning lower ASCVD risk predictions, application of the PREVENT equations to existing treatment thresholds could reduce eligibility for statin and antihypertensive therapy among 15.8 million US adults.

DOI: 10.1001/jama.2024.12537

Source: https://jamanetwork.com/journals/jama/fullarticle/2821624

期刊信息

JAMA-Journal of The American Medical Association:《美国医学会杂志》,创刊于1883年。隶属于美国医学协会,最新IF:157.335
官方网址:https://jamanetwork.com/
投稿链接:http://manuscripts.jama.com/cgi-bin/main.plex


Baidu
map