当前位置:科学网首页 > 小柯机器人 >详情
研究揭示高危青少年躁郁症的潜在风险生物标志物
作者:小柯机器人 发布时间:2024/5/9 13:27:22

北京大学Lili Guan团队揭示高危青少年躁郁症的潜在风险生物标志物。2024年5月6日,《神经科学通报》杂志在线发表了这项成果。

研究人员对最近的临床研究进行了回顾,以便在有躁郁症(BD)家族或(和)临床风险的青少年中寻找可能的诊断前生物标志物。研究人员发现预测转为BD的假定生物标志物包括基于不同假设的多个样本来源的研究结果。透视研究显示的推定风险生物标志物包括较高的双相多基因风险评分、表观遗传改变、免疫参数升高、前边缘系统缺陷以及与情绪和奖赏处理相关的脑回路功能障碍。

未来的研究需要加强机器学习的整合,使临床检测方法更加客观,并提高队列研究的质量。

据介绍,BD是一种高度遗传性的功能性疾病。识别和干预BD,尤其是早期发病的BD,仍然具有挑战性。预测高危青少年BD转变的风险生物标志物可能会改善疾病的预后。

附:英文原文

Title: Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth

Author: Meng, Xinyu, Zhang, Shengmin, Zhou, Shuzhe, Ma, Yantao, Yu, Xin, Guan, Lili

Issue&Volume: 2024-05-06

Abstract: Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.

DOI: 10.1007/s12264-024-01219-w

Source: https://link.springer.com/article/10.1007/s12264-024-01219-w

期刊信息

Neuroscience Bulletin《神经科学通报》,创刊于2006年。隶属于施普林格·自然出版集团,最新IF:5.6

官方网址:https://link.springer.com/journal/12264
投稿链接:https://mc03.manuscriptcentral.com/nsb


Baidu
map