北京大学定量生物学中心韩敬东课题组在研究中取得进展。他们的研究认为鉴定单细胞衰老揭示了衰老的异质性、轨迹和调节因子。该研究于2024年4月10日发表于国际一流学术期刊《细胞—代谢》杂志上。
研究人员提出了一个衰老细胞识别(SenCID) 的机器学习程序,它准确地识别了总细胞和单细胞转录组中的衰老细胞。SenCID对来自30种细胞类型的52个衰老转录组数据集的602个样本进行了训练,鉴定了6个主要的衰老身份(SIDs)。不同的SIDs表现出不同的衰老基线、干性、基因功能和对衰老的反应。
SenCID可以构建正常衰老、慢性疾病和COVID-19下的衰老轨迹。此外,当应用于单细胞Perturb-测序数据时,SenCID有助于揭示衰老调节剂的层次结构。总的来说,SenCID是细胞衰老精确单细胞分析的重要工具,可以针对衰老细胞进行靶向性干预。
研究人员表示,细胞衰老是许多衰老相关病理的基础,但其异质性为研究和靶向衰老细胞带来了挑战。
附:英文原文
Title: Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators
Author: Wanyu Tao, Zhengqing Yu, Jing-Dong J. Han
Issue&Volume: 2024-04-10
Abstract: Cellular senescence underlies many aging-related pathologies, but its heterogeneityposes challenges for studying and targeting senescent cells. We present here a machinelearning program senescent cell identification (SenCID), which accurately identifiessenescent cells in both bulk and single-cell transcriptome. Trained on 602 samplesfrom 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifiessix major senescence identities (SIDs). Different SIDs exhibit different senescencebaselines, stemness, gene functions, and responses to senolytics. SenCID enables thereconstruction of senescent trajectories under normal aging, chronic diseases, andCOVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helpsreveal a hierarchy of senescence modulators. Overall, SenCID is an essential toolfor precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
DOI: 10.1016/j.cmet.2024.03.009
Source: https://www.cell.com/cell-metabolism/abstract/S1550-4131(24)00088-3
Cell Metabolism:《细胞—代谢》,创刊于2005年。隶属于细胞出版社,最新IF:31.373
官方网址:https://www.cell.com/cell-metabolism/home
投稿链接:https://www.editorialmanager.com/cell-metabolism/default.aspx