英国牛津大学Snaith Henry J.团队报道了多结光伏电池的钙钛矿前驱体解决方案。相关研究成果于2024年12月23日发表在《自然》。
多结光伏电池(PVs)因其能够实现超出单结电池辐射极限的,功率转换效率(PCE)的卓越能力而日益突出,其中改善窄带隙锡铅钙钛矿对薄膜器件至关重要。
研究人员通过重点了解锡铅钙钛矿前体溶液的化学性质,发现Sn(II)物种主导了与前体和添加剂的相互作用,并揭示了羧酸在调节溶液胶体性质和薄膜结晶方面的独特作用,以及铵在改善薄膜光电性能方面的独特角色。结合这两个官能团的材料,氨基酸盐,大大提高了钙钛矿薄膜的半导体的质量和均匀性,超过了作为单独分子的一部分引入的单个官能团的效果。
增强的锡铅钙钛矿层使研究人员能够制造单结、双结和三结器件的PCEs分别为23.9%、29.7%(认证29.26%)和28.7%的太阳能电池。1cm2三结器件PCE为28.4%(认证为27.28%)。在环境中进行860小时的最大功率点跟踪后,封装的三结电池保持了其初始效率的80%。研究人员进一步制造了四结器件,获得了27.9%的PCE,最高开路电压为4.94 V。
该项工作为多结PV建立了新的基准。
附:英文原文
Title: Steering perovskite precursor solutions for multijunction photovoltaics
Author: Hu, Shuaifeng, Wang, Junke, Zhao, Pei, Pascual, Jorge, Wang, Jianan, Rombach, Florine, Dasgupta, Akash, Liu, Wentao, Truong, Minh Anh, Zhu, He, Kober-Czerny, Manuel, Drysdale, James N., Smith, Joel A., Yuan, Zhongcheng, Aalbers, Guus J. W., Schipper, Nick R. M., Yao, Jin, Nakano, Kyohei, Turren-Cruz, Silver-Hamill, Dallmann, Andr, Christoforo, M. Greyson, Ball, James M., McMeekin, David P., Zaininger, Karl-Augustin, Liu, Zonghao, Noel, Nakita K., Tajima, Keisuke, Chen, Wei, Ehara, Masahiro, Janssen, Ren A. J., Wakamiya, Atsushi, Snaith, Henry J.
Issue&Volume: 2024-12-23
Abstract: Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells1-8, where improving narrow bandgap tin–lead perovskites is critical for thin-film devices9. With a focus on understanding the chemistry of tin–lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin–lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9, 29.7 (certified 29.26%), and 28.7% for single-, double-, and triple-junction devices, respectively. Our 1-cm2 triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.
DOI: 10.1038/s41586-024-08546-y
Source: https://www.nature.com/articles/s41586-024-08546-y
官方网址:http://www.nature.com/