当前位置:科学网首页 > 小柯机器人 >详情
全球区域性热浪热点的出现速度超过了气候模式的模拟
作者:小柯机器人 发布时间:2024/11/27 20:44:02

美国哥伦比亚大学Kai Kornhuber研究团队近日取得一项新成果。他们的研究显示,全球区域性热浪热点的出现速度超过了气候模式的模拟。2024年11月26日出版的《美国科学院院刊》发表了这项成果。

据了解,最近发生的多起破纪录的天气事件引发了,人们对气候模型是否足以有效预测和应对,气候对人类生活、基础设施和生态系统造成的前所未有的影响的质疑。

研究表明,即使考虑到区域夏季背景变暖的影响,全球几个地区的极端高温正在显著增加,其幅度也比目前最先进的气候模型所预测的要快。在全球所有陆地面积上,与再分析数据相比,模型低估了极端地表温度分布上尾加宽超过每十年0.5°C的正趋势,并且总体上显示出显著增加趋势的比例较低。

在较小程度上,模式还低估了在某些地区观测到的上尾收缩的强烈趋势,而从全球角度来看,适度的趋势得到了很好的再现。他们的研究结果强调,需要更好地理解和模拟极端高温的驱动因素,并迅速减轻温室气体排放,以避免意外天气事件造成的进一步伤害。

附:英文原文

Title: Global emergence of regional heatwave hotspots outpaces climate model simulations

Author: Kornhuber, Kai, Bartusek, Samuel, Seager, Richard, Schellnhuber, Hans Joachim, Ting, Mingfang

Issue&Volume: 2024-11-26

Abstract: Multiple recent record-shattering weather events raise questions about the adequacy of climate models to effectively predict and prepare for unprecedented climate impacts on human life, infrastructure, and ecosystems. Here, we show that extreme heat in several regions globally is increasing significantly and faster in magnitude than what state-of-the-art climate models have predicted under present warming even after accounting for their regional summer background warming. Across all global land area, models underestimate positive trends exceeding 0.5 °C per decade in widening of the upper tail of extreme surface temperature distributions by a factor of four compared to reanalysis data and exhibit a lower fraction of significantly increasing trends overall. To a lesser degree, models also underestimate observed strong trends of contraction of the upper tails in some areas, while moderate trends are well reproduced in a global perspective. Our results highlight the need to better understand and model the drivers of extreme heat and to rapidly mitigate greenhouse gas emissions to avoid further harm from unexpected weather events.

DOI: 10.1073/pnas.2411258121

Source: https://www.pnas.org/doi/abs/10.1073/pnas.2411258121

 

期刊信息
PNAS:《美国科学院院刊》,创刊于1914年。隶属于美国科学院,最新IF:12.779
官方网址:https://www.pnas.org

Baidu
map