当前位置:科学网首页 > 小柯机器人 >详情
科学家通过电磁感应透明冷却快速形成量子气体
作者:小柯机器人 发布时间:2024/10/30 15:25:12

近日,新加坡南洋理工大学的Shau-Yu Lan&Wui Seng Leong及其研究团队取得一项新进展。经过不懈努力,他们通过电磁感应透明冷却快速形成量子气体。相关研究成果已于2024年10月28日在国际知名学术期刊《自然—物理学》上发表。

该研究团队报道了通过电磁感应透明和绝热膨胀技术,将固定于三维光学晶格中的单个铷原子冷却,从而生成量子气体的方法。在仅仅10毫秒的冷却后,研究人员通过将原子绝热转移到光学偶极阱中,验证了从热气体到量子气体的相变。

研究人员观察到三维阱中原子的坍缩现象,这是具有负散射长度的量子气体的一个显著特征。此外,在一维光学阱中,他们还观察到了稳定且强相关量子气体的出现。这项研究结果展示了一种灵活且快速的方法,可以在最小的时间和资源需求下实现量子简并气体。

据悉,超冷量子气体在多体物理、量子传感和量子模拟中发挥着关键作用。长期以来,人们采用诸如体系综蒸发冷却和精密激光冷却等方法,有效地在原子气体中实现了量子简并。因此,一种更简单、更快速的量子气体形成方法将对推动该领域的发展具有重大意义。

附:英文原文

Title: Fast quantum gas formation via electromagnetically induced transparency cooling

Author: Xin, Mingjie, Leong, Wui Seng, Chen, Zilong, Wang, Yu, Lan, Shau-Yu

Issue&Volume: 2024-10-28

Abstract: Ultracold quantum gases play a pivotal role in many-body physics, quantum sensing and quantum simulation. Over time, methods such as evaporative cooling in bulk ensembles and precision laser-cooling have been employed to effectively achieve quantum degeneracy in atomic gases. A simpler and more rapid way to form quantum gases would, thus, hold considerable promise in advancing the field. Here, we report the creation of a quantum gas by cooling individual rubidium atoms pinned in a three-dimensional optical lattice using electromagnetically induced transparency and adiabatic expansion. After just 10ms of cooling, we verified the phase transition from a thermal to a quantum gas by adiabatically transferring the atoms to optical dipole traps. We observed the collapse of atoms in three-dimensional traps, a distinctive hallmark of a quantum gas with negative scattering length. Additionally, in a one-dimensional optical trap, we observed the emergence of a stable and strongly correlated quantum gas. Our results introduce a versatile and fast approach to achieving quantum degenerate gases with minimal time and resource requirements.

DOI: 10.1038/s41567-024-02677-9

Source: https://www.nature.com/articles/s41567-024-02677-9

期刊信息
Nature Physics:《自然—物理学》,创刊于2005年。隶属于施普林格·自然出版集团,最新IF:19.684

Baidu
map