当前位置:科学网首页 > 小柯机器人 >详情
科学家实现超声波介导的可控强力生物粘附
作者:小柯机器人 发布时间:2022/8/14 22:33:19

加拿大麦吉尔大学Jianyu Li、瑞士苏黎世联邦理工学院Outi Supponen等研究人员合作开发出超声波介导的可控强力生物粘附。相关论文于2022年8月11日发表于国际学术期刊《科学》。

研究人员报告了一种超声(US)介导的策略,从而实现具有可控性和抗疲劳性的强力生物粘附。在没有化学反应的情况下,US可以将水凝胶和猪皮肤之间的粘附能量和界面疲劳阈值放大到100和10倍。综合实验和理论模型表明,关键机制是US诱导的空化作用,它将锚定物推进并固定在组织中,减轻了屏障效应。这项策略实现了强力生物粘附性的空间模式化、按需分离和透皮药物输送。这项工作扩大了强力生物粘附的材料范围,并使生物粘附技术具有高度可控性。

据介绍,强力生物粘附在工程和医学中具有重要的意义,但在形成和控制方面仍然具有挑战性。

附:英文原文

Title: Controlled tough bioadhesion mediated by ultrasound

Author: Zhenwei Ma, Claire Bourquard, Qiman Gao, Shuaibing Jiang, Tristan De Iure-Grimmel, Ran Huo, Xuan Li, Zixin He, Zhen Yang, Galen Yang, Yixiang Wang, Edmond Lam, Zu-hua Gao, Outi Supponen, Jianyu Li

Issue&Volume: 2022-08-12

Abstract: Tough bioadhesion has important implications in engineering and medicine but remains challenging to form and control. We report an ultrasound (US)–mediated strategy to achieve tough bioadhesion with controllability and fatigue resistance. Without chemical reaction, the US can amplify the adhesion energy and interfacial fatigue threshold between hydrogels and porcine skin by up to 100 and 10 times. Combined experiments and theoretical modeling suggest that the key mechanism is US-induced cavitation, which propels and immobilizes anchoring primers into tissues with mitigated barrier effects. Our strategy achieves spatial patterning of tough bioadhesion, on-demand detachment, and transdermal drug delivery. This work expands the material repertoire for tough bioadhesion and enables bioadhesive technologies with high-level controllability.

DOI: abn8699

Source: https://www.science.org/doi/10.1126/science.abn8699

 

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:41.037

Baidu
map