美国约翰霍普金斯大学Suchi Saria、Albert W. Wu等研究人员合作揭示,基于TREWS机器学习的预警系统在败血症治疗时机中的影响。这一研究成果于2022年7月21日发表在国际学术期刊《自然—医学》上。
Author: Henry, Katharine E., Adams, Roy, Parent, Cassandra, Soleimani, Hossein, Sridharan, Anirudh, Johnson, Lauren, Hager, David N., Cosgrove, Sara E., Markowski, Andrew, Klein, Eili Y., Chen, Edward S., Saheed, Mustapha O., Henley, Maureen, Miranda, Sheila, Houston, Katrina, Linton, Robert C., Ahluwalia, Anushree R., Wu, Albert W., Saria, Suchi
Issue&Volume: 2022-07-21
Abstract: Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers’ knowledge of, experience with and attitudes toward such systems.
DOI: 10.1038/s41591-022-01895-z
Source: https://www.nature.com/articles/s41591-022-01895-z
Nature Medicine:《自然—医学》,创刊于1995年。隶属于施普林格·自然出版集团,最新IF:30.641
官方网址:https://www.nature.com/nm/
投稿链接:https://mts-nmed.nature.com/cgi-bin/main.plex