当前位置:科学网首页 > 小柯机器人 >详情
群体学习实现肿瘤组织病理中的去中心化人工智能
作者:小柯机器人 发布时间:2022/4/26 12:21:57

英国利兹大学Jakob Nikolas Kather小组利用群体学习实现肿瘤组织病理中的去中心化人工智能。这一研究成果与2022年4月25日在线发表在国际学术期刊《自然—医学》上。

据研究人员介绍,人工智能(AI)可以直接从常规组织病理切片中预测分子改变的存在。然而,训练强大的人工智能系统需要大量的数据集,而这些数据的收集面临着实际的、道德的和法律的障碍。这些障碍可以通过群体学习(SL)来克服,在SL学习中,合作伙伴共同训练人工智能模型,同时避免数据传输和垄断性数据管理。
 
研究人员展示了SL在来自5000多名患者的千兆像素组织病理学图像的大型多中心数据集中的成功使用。结果表明,使用SL训练的人工智能模型可以直接从苏木精和伊红(H&E)染色的结直肠癌病理切片中预测BRAF突变状态和微卫星不稳定性。研究人员对来自北爱尔兰、德国和美国的三个患者队列训练了人工智能模型,并在英国的两个独立数据集中验证了预测性能。数据显示,SL训练的人工智能模型优于大多数本地训练的模型,并与在合并的数据集上训练的模型表现相当。此外,结果表明,基于SL的人工智能模型具有数据效率。在未来,SL可用于训练任何组织病理学图像分析任务的分布式人工智能模型,并消除了数据传输的需要。
 
附:英文原文
 
Title: Swarm learning for decentralized artificial intelligence in cancer histopathology

Author: Saldanha, Oliver Lester, Quirke, Philip, West, Nicholas P., James, Jacqueline A., Loughrey, Maurice B., Grabsch, Heike I., Salto-Tellez, Manuel, Alwers, Elizabeth, Cifci, Didem, Ghaffari Laleh, Narmin, Seibel, Tobias, Gray, Richard, Hutchins, Gordon G. A., Brenner, Hermann, van Treeck, Marko, Yuan, Tanwei, Brinker, Titus J., Chang-Claude, Jenny, Khader, Firas, Schuppert, Andreas, Luedde, Tom, Trautwein, Christian, Muti, Hannah Sophie, Foersch, Sebastian, Hoffmeister, Michael, Truhn, Daniel, Kather, Jakob Nikolas

Issue&Volume: 2022-04-25

Abstract: Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. A decentralized, privacy-preserving machine learning framework used to train a clinically relevant AI system identifies actionable molecular alterations in patients with colorectal cancer by use of routine histopathology slides collected in real-world settings.

DOI: 10.1038/s41591-022-01768-5

Source: https://www.nature.com/articles/s41591-022-01768-5

期刊信息

Nature Medicine:《自然—医学》,创刊于1995年。隶属于施普林格·自然出版集团,最新IF:30.641
官方网址:https://www.nature.com/nm/
投稿链接:https://mts-nmed.nature.com/cgi-bin/main.plex


Baidu
map