当前位置:科学网首页 > 小柯机器人 >详情
运动行为中第5层神经元簇状树突的动态区室计算
作者:小柯机器人 发布时间:2022/4/17 13:41:32

以色列理工学院Jackie Schiller和美国科罗拉多大学医学院Alon Poleg-Polsky团队合作发现,运动行为中第5层神经元簇树突的动态区室计算。相关论文于2022年4月15日发表在《科学》杂志上。
 
在运动期间,来自运动皮层的簇树的结构功能映射揭示了两个形态不同的第 5 层锥体束神经元 (PTN) 群,它们表现出特定的簇计算特性。早期的分叉和大连接 PTN 显示出明显的簇功能区室化,代表它们的两个簇半树内部和之间的不同运动变量组合。相比之下,晚期分叉和较小的连接 PTN 显示出同步的簇激活。N-甲基-D-天冬氨酸(NMDA)的树突结构和动态募集 - 尖峰机制解释了不同的区室化模式。
 
他们的研究结果支持运动计算的形态依赖框架,其中可以组合招募独立的放大单元来表示同一树中的不同运动序列。
 
据悉,第 5 层锥体神经元的簇状树突形成对运动学习和表现很重要的特殊区室,但它们的计算能力仍不清楚。
 
附:英文原文

Title: Dynamic compartmental computations in tuft dendrites of layer 5 neurons during motor behavior

Author: Yara Otor, Shay Achvat, Nathan Cermak, Hadas Benisty, Maisan Abboud, Omri Barak, Yitzhak Schiller, Alon Poleg-Polsky, Jackie Schiller

Issue&Volume: 2022-04-15

Abstract: Tuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning and performance, yet their computational capabilities remain unclear. Structural-functional mapping of the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing different motor variable combinations within and between their two tuft hemi-trees. By contrast, late bifurcating and smaller nexus PTNs showed synchronous tuft activation. Dendritic structure and dynamic recruitment of the N-methyl-D-aspartate (NMDA)–spiking mechanism explained the differential compartmentalization patterns. Our findings support a morphologically dependent framework for motor computations, in which independent amplification units can be combinatorically recruited to represent different motor sequences within the same tree.

DOI: abn1421

Source: https://www.science.org/doi/10.1126/science.abn1421

 

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:41.037

Baidu
map