当前位置:科学网首页 > 小柯机器人 >详情
科学家揭示海洋和陆生群体的生物多样性变化
作者:小柯机器人 发布时间:2019/10/18 14:53:46

德国生物多样性综合研究中心Shane A. Blowes、美国丹尼森大学Sarah R. Supp和英国圣安德鲁斯大学Maria Dornelas等研究人员合作取得一项新成果。他们的研究揭示了海洋和陆生群体中生物多样性的变化。2019年10月18日出版的《科学》发表了这项成果。

研究人员使用239个研究中的50000多个生物多样性时间序列,研究了物种丰富度和组成变化的空间变化,并发现了生物多样性变化的明显地理变化。快速的成分变化是普遍的,并且海洋生物群落超过总体趋势,而陆地生物群落落后于总体趋势。尽管在一些海洋研究中发现群体的丰富度每年平均增加和减少的趋势高达20%,但其平均富集度并没有改变。在局部范围上,广泛的成分重组通常与丰富度变化脱钩,而海洋中的生物多样性变化最强烈且变化最大。

研究人员表示,人类活动从根本上改变了生物多样性。全球范围内下降的预测与地方范围内高度变化的趋势形成对比,表明生物多样性变化可能是具有空间结构的。

附:英文原文

Title: The geography of biodiversity change in marine and terrestrial assemblages

Author: Shane A. Blowes, Sarah R. Supp, Laura H. Anto, Amanda Bates, Helge Bruelheide, Jonathan M. Chase, Faye Moyes, Anne Magurran, Brian McGill, Isla H. Myers-Smith, Marten Winter, Anne D. Bjorkman, Diana E. Bowler, Jarrett E. K. Byrnes, Andrew Gonzalez, Jes Hines, Forest Isbell, Holly P. Jones, Laetitia M. Navarro, Patrick L. Thompson, Mark Vellend, Conor Waldock, Maria Dornelas

Issue&Volume: 2019/10/18

Abstract: 

Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.

DOI: 10.1126/science.aaw1620

Source:https://science.sciencemag.org/content/366/6463/339

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:41.037

Baidu
map