来源:科学网 发布时间:2024/9/6 15:38:41
选择字号:
小
中
大
|
|
|
法国埃菲尔大学教授讲述用于工业应用的氧化锌基纳米材料:从纳米发电机到第五代道路 |
|
直播时间:2024年9月6日(周五)20:00——21:30
直播平台
科学网APP
https://weibo.com/l/wblive/p/show/1022:2321325075623734542513
(科学网微博直播间链接)
科学网微博
科学网视频号
【直播简介】
北京时间2024年9月6日晚八点,iCANX Talks 第202期邀请到了法国埃菲尔大学Yamin LEPRINCE-WANG教授作为主讲嘉宾,法国埃菲尔大学Abderrahmane Kherbeche教授、西北大学经光银教授也将进行分享!此外,
香港城市大学宋宇教授担任嘉宾,中国
科学院北京纳米能源与系统研究所张弛担任主持人。
这将是一场汇聚顶尖学者的盛会,共同探讨前沿科技与学术挑战!更多精彩,敬请期待!
【嘉宾介绍】
Yamin LEPRINCE-WANG
法国埃菲尔大学
ZnO Based Nanomaterials for Industrial Applications: From Nanogenerators to 5th Generation Road
Todays world faces two closely related serious problems: energy shortage and environmental pollution. The impact on environment and on human health of different pollutants produced par human activities including energy production, especially chemical pollutants, is becoming critical due to their drastic consequences on our main vital resources: water and air. In recent years, extensive efforts of fundamental research and developing practical processes have been devoted to the green energy production and to the polluted water & air treatment. ZnO, as a multifunctional semiconductor, has been widely studied since 20 years for its piezoelectric nanogeneration for microelectronic device power suppling. On the other hand, the semiconductor-based photocatalytic process has shown a great potential as an environmental-friendly and sustainable treatment technology by using solar energy. Among the photocatalytic materials, nanostructured ZnO is a promising candidate for its high surface/volume ratio, its easy-controllable & low cost synthesis, and its chemical & thermal stability. The ability of ZnO based photocatalysis technology has been widely demonstrated to remove persistent organic compounds (such as dyes, antibiotics, & microorganisms) in water, and toxic gases (such as NOx, COVs, …) in air; and its photocatalytic efficiency can be enhanced by transition metal doping process. ZnO nanostructures can also be synthesized on civil engineering materials for self-cleaning road application to avoid the soil pollution.
当今世界面临两个密切相关的严重问题:能源短缺和环境污染。人类活动产生的不同污染物对环境和人类健康的影响,尤其是能源生产中的化学污染物,正在变得至关重要,因为它们对我们的主要生命资源:水和空气产生了严重的后果。近年来,大量的基础研究和开发实用过程的努力都投入到了绿色能源生产和污染水及空气处理中。作为多功能半导体的氧化锌(ZnO),因其压电纳米发电能力,为微电子设备供电,自20年前以来已被广泛研究。另一方面,基于半导体的光催化过程显示出作为环境友好和可持续处理技术的巨大潜力,它利用太阳能。在光催化材料中,纳米结构的氧化锌因其高比表面积、易于控制和低成本的合成以及化学和热稳定性而成为一个有希望的候选材料。基于氧化锌的光催化技术已被广泛证明能够去除水中的持久性有机化合物(如染料、抗生素和微生物)以及空气中的有毒气体(如NOx、COVs等);其光催化效率可以通过过渡金属掺杂过程来提高。氧化锌纳米结构也可以合成在土木 上,用于自清洁道路应用,以避免土壤污染。
[BIOGRAPHY]
Yamin Leprince-Wang is Full Professor (Exceptional Class) at the Gustave Eiffel University (UGE), France, where she is Head of the Materials Science & Engineering Master’s degree course. Her main research interest consists of synthesis and characterization of 1D & 2D oxide nanomaterials and their applications in energy and environment fields, such as nanogenerator of electricity, solar cells, chemical sensors, and water & air purification using photocatalysis process. She received B.S. degree from Zhejiang University in China (1985), M.S. & PhD degrees from University Paris VI in France in 1991 & 1995, respectively; then joined UGE (ex. UPEM) in 1995. Chief of the Material Science Department between 2006-2010, and leader of the Laboratoire de Physique des Matériaux Divisés & Interfaces (LPMDI, UMR CNRS 8108) between 2008-2014, she co-authored more than 120 peer reviewed papers, 2 books, and 3 patents.
Yamin Leprince-Wang 是法国 Gustave Eiffel 大学(UGE)的正教授(特级),她在那里担任材料科学与工程硕士课程的负责人。她的主要研究兴趣包括一维和二维氧化物纳米材料的合成和表征,以及它们在能源和环境领域的应用,如电力纳米发电机、太阳能电池、化学传感器以及使用光催化过程的水和空气净化。她于1985年在中国浙江大学获得学士学位,1991年和1995年分别在法国巴黎第六大学获得硕士和博士学位;随后于1995年加入UGE(前UPEM)。在2006年至2010年期间担任材料科学系主任,并在2008年至2014年期间领导了分散材料与界面物理实验室(LPMDI,UMR CNRS 8108),她合著了超过120篇同行评审论文、2本书和3项专利。
Abderrahmane Kherbeche
法国埃菲尔大学
Hydrodynamics and gas/liquid mass transfer around bubbles in gas/liquid/solid reactors
Gas/Liquid/Solid (GLS) reactors have played a crucial role in the development of chemical and industrial processes. The performance of these reactors relies heavily on hydrodynamics and gas/liquid mass transfer. Typically, GLS reactors, often containing packing particles, confine rising bubbles to illustrate various physical phenomena that significantly influence hydrodynamics and can potentially enhance mass transfer performance. The presence of solid packing particles in these reactors leads to greater bubble deformation, extended rising residence time, and a thinner liquid film, all of which accelerate gas-liquid mass transfer. In this iCANX talk, I propose to present how to experimentally quantify the contribution of the near solid surface by investigating bubble/solid surface contact from a multi-scale perspective and its impact on hydrodynamics and gas-liquid mass transfer. What are the new methods for mass transfer quantification at the local scale, and how can controlling bubble/solid interactions optimize the performance of Gas/Liquid/Solid reactors?
气/液/固(GLS)反应器在化学和工业过程的发展中发挥了关键作用。这些反应器的性能在很大程度上依赖于流体动力学和气/液质量传递。通常,GLS反应器中常常含有填充颗粒,这些颗粒限制了上升气泡的运动,以展示各种显著影响流体动力学的物理现象,并可能增强质量传递性能。在这些反应器中存在固体填充颗粒,会导致气泡变形更大、上升停留时间延长以及液体膜更薄,所有这些都加速了气-液质量传递。在这次iCANX演讲中,我提议展示如何通过从多尺度角度研究气泡/固体表面接触来实验量化近固体表面的贡献及其对流体动力学和气-液质量传递的影响。在局部尺度上,有哪些新的方法可以量化质量传递,以及如何通过控制气泡/固体相互作用来优化气/液/固反应器的性能?
[BIOGRAPHY]
Abderrahmane Kherbeche is an Associate Professor in Process Engineering applied to the Environment at Gustave Eiffel University since September 2020. He defended his Ph.D. on September 7, 2016. He was a post-doctoral researcher in Xi’an Jiaotong University (China) from 2017 to 2019, Lecturer in Sorbonne University (Campus Pierre et Marie-Curie) from 2019 to 2020. He is Head of the Process Engineering bachelor’s degree course. He gained expertise in multi-scale investigation of Bubble/Drop/Solid interactions, studying hydrodynamics and gas/liquid mass transfer in Gas/Liquid/Solid three-phase systems. His research involved the use of sophisticated optical equipment, such as ultra-fast cameras capturing up to 2 million frames per second, combined with colorimetric techniques, in various laboratories in China (Xi’an Jiaotong University), France (Gustave Eiffel University, INSA Toulouse, Sorbonne University Paris), and Morocco (Ecole Hassania des Travaux Publics). He was awarded by UNESCO – Keizo Obuchi Inter
nationalFellowship of Excellence from the Government of Japan and a CNRS Excellence Fellowship in Morocco. Additionally, He coordinates two research projects and Co-authorship 14 papers at top inter
nationaljournals spanning the fields of Chemical Engineering, Fluid Mechanics, and Environmental Engineering and intended 14 inter
nationalconferences.
Abderrahmane Kherbeche自2020年9月以来是法国 Gustave Eiffel 大学环境过程工程应用的副教授。他于2016年9月7日完成了他的博士论文答辩。他曾是西安交通大学(中国)的博士后研究员(2017年至2019年),并在索邦大学(皮埃尔和玛丽·居里校区)担任讲师(2019年至2020年)。他是过程工程学士学位课程的负责人。他在气/液/固三相系统中研究气泡/液滴/固体相互作用的多尺度调查方面积累了专业知识,研究了流体动力学和气/液质量传递。他的研究涉及使用复杂的光学设备,如每秒可捕获高达200万帧的超高速摄像机,结合比色技术,在包括中国西安交通大学、法国 Gustave Eiffel 大学、图卢兹
国立应用科学学院、巴黎索邦大学以及摩洛哥哈桑尼亚公共工程学校的多个实验室中进行。他曾获得日本政府联合国教科文组织——小渊国际杰出奖学金和摩洛哥国家科学研究中心优秀奖学金。此外,他协调了两项研究项目,并在化学工程、流体力学和环境工程领域的顶级国际期刊上共同撰写了14篇论文,并在14个国际会议上发表了演讲。
Guangyin JING
西北大学
ZnO Nanomaterials in Action: Antimicrobial Applications as a Case Study
Nanomaterials are celebrated for their exceptional properties and wide-ranging applications, making them a focal point of contemporary research. Among these, zinc oxide (ZnO) has garnered significant interest due to its versatility in various fields, notably in air and water treatment. While Professor Yamin LEPRINCE-WANG has extensively studied these applications, this presentation will explore another promising aspect of ZnO—its potential as an antimicrobial agent. Here, I will present a case study on the latest advancements and applications of ZnO nanomaterials in antibacterial treatments. When synthesized in nanostructured forms, ZnO demonstrates remarkable properties, including high surface area, enhanced reactivity, and improved biocompatibility. These features position ZnO as a strong candidate for biomedical applications, particularly in combating microbial infections. I will delve into the mechanisms by which ZnO nanoparticles exert their antimicrobial effects, offering insights into their potential as effective antibacterial agents.
纳米材料因其卓越的特性和广泛的应用而备受赞誉,成为当代研究的焦点。在这些材料中,氧化锌(ZnO)因其在各个领域的多功能性而受到特别关注,尤其是在空气和水处理方面。尽管Yamin LEPRINCE-WANG教授已经广泛研究了这些应用,但本次演讲将探讨ZnO的另一个有前景的方面——它作为抗菌剂的潜力。在这里,我将介绍ZnO纳米材料在抗菌治疗中的最新进展和应用的案例研究。当以纳米结构形式合成时,ZnO表现出显著的特性,包括高比表面积、增强的反应性和改善的生物相容性。这些特性使ZnO成为生物医学应用的强有力候选材料,特别是在抗击微生物感染方面。我将深入探讨ZnO纳米颗粒发挥其抗菌效应的机制,提供对其作为有效抗菌剂潜力的见解。
[BIOGRAPHY]
JING Guangyin is a Professor at the School of Physics, specializing in soft matter physics, biophysics, and their medical applications. He earned his bachelors degree from Sun Yat-sen University in 2002 and his Ph.D. from the School of Physics at Peking University in 2007. He then conducted postdoctoral research at ESPCI Paris and Paris-Sud University. In 2009, Dr. Jing joined the School of Physics at Northwest University, where he established the Soft Matter Physics Laboratory. He currently serves as the Director of the Department of Materials Physics. Dr. Jings research focuses on active matter, self-propelled microswimmers, collective behavior, and their biomedical applications. He is also part of a joint research team selected for the "Sino-French Scientific Research Partnership Program." To date, Professor Jing has published over 80 peer-reviewed articles.
经光银教授是物理学院的教授,专门研究软物质物理、生物物理及其医学应用。他于2002年获得中山大学学士学位,2007年获得北京大学物理学院博士学位。之后,他在巴黎高等工业物理化学学院和巴黎南大学进行了博士后研究。2009年,景博士加入了西北大学物理学院,并在那里建立了软物质物理实验室。他目前担任材料物理系主任。景教授的研究集中在活性物质、自驱动微游动体、集体行为及其生物医学应用。他还是被选中参加"中法科学研究伙伴计划"的联合研究团队的一部分。至今,景教授已发表了80多篇同行评审的文章。
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
|
|