记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检测领域的权威杂志《无损检测与评价国际》上。
25℃-3000℃散斑图:(a)T=25℃;(b)T=1100℃;(c)T=1500℃;(d)T=1900℃;(e)T=2100℃;(f)T=2300℃;(g)T=2500℃;(h)T=2700℃;(i)T=2900℃;(j)T=3000℃;(k)在加热至3000℃后冷却至25℃的散斑
此前,在超高温极端环境应变场测量领域一直缺乏有效测量表征手段,主要难点包括:一是超高温热辐射导致测量图像过度曝光,无法表征;二是使用中性密度、蓝光、偏振等多组滤光片,导致测量步骤繁琐,表征成像效果欠佳;三是作为变形信息载体的散斑在超高温中容易脱落,导致测量失败,无法表征。
典型温度下应变场云图:(a)1100℃;(b)2100℃;(c)2500℃;(d)2700℃;(e)2900℃;(f)3000℃
?
该文章通讯作者、北京航空航天大学、天目山实验室助理研究员董亚丽表示,研究人员利用紫外-数字图像(UV-DIC)系统,仅用单个紫外滤光片就有效抑制了3000℃热辐射,同时开发了以碳化铪粉末为散斑材料的超高温散斑制备工艺,最终在3000℃环境下成功测量了石墨热膨胀系数,并清晰记录了被测对象从室温到3000℃的高质量图像。
该成果由北京航空航天大学、天目山实验室联合研发。“以上难点在紫外-数字图像相关的应变场测量方法中均被很好地解决,该测量方法能够有效、准确测量热端部件在超高温极端热力耦合条件下的热变形,对于助力我国航空航天技术发展具有积极意义。”李宜彬说。
(受访者供图)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。