作者:崔雪芹 来源:中国科学报 发布时间:2022/7/22 16:35:32
选择字号:
构筑疏水通道助力煤制烯烃效率翻倍

 

科研团队在实验室。(浙大供图)

7月22日,《科学》刊登浙江大学化学工程与生物工程学院教授肖丰收、研究员王亮团队与中国科学院精密测量科学与技术创新研究院研究员郑安民团队合作成果,研究团队报道了一种控制催化剂表面微观环境中水物种的吸-脱附平衡的策略,通过将一种超疏水材料聚二乙烯基苯与经典钴基催化剂物理混合,实现了催化性能的大幅提升。在250 °C下,CO的单程转化率达到63.5%,同时保持71.4%的碳氢化合物为低碳烯烃产物(C2-C4=)。

费托合成(Fischer–Tropsch synthesis),又称F-T合成,是以合成气(一氧化碳和氢气的混合气体,主要来源于煤炭,生物质的气化)为原料,通常在铁基或钴基催化剂和适当条件下合成碳氢化合物的工艺过程。

该技术是20世纪20年代由德国化学家 Franz Fischer 和Hans Tropsch开发。由费托合成过程获得烯烃产品(Fischer-Tropsch synthesis to olefins, FTO)也是煤制烯烃的重要手段,但是当前反应过程依然存在反应温度高、效率不足等问题。发展低温、高效的催化剂对于煤炭的清洁利用获得大宗化学品具有重要意义。

研究团队研究FTO过程中关键反应物种的扩散对该过程的重要影响,发现在CO加氢过程中生成一定量的水会吸附在催化剂表面抑制CO和氢气分子后续的吸附与转化,该问题在较低温度反应过程中更为明显。如何进一步提高催化剂的低温反应活性的同时又保持优异的烯烃选择性,成为了迫切需要解决的问题。

不同于传统费托催化剂的研究,浙大团队独辟蹊径,将目光聚焦到反应产物在催化剂表面的吸-脱附微平衡调控上。肖丰收说:“这个想法也很简单,我们通过催化剂和疏水材料物理混合的方式,在催化剂表面构筑特定的微观环境,同时促进产物的脱附和抑制其再吸附,推动反应正向进行。”另外,通过物理混合的方法,可以对现有催化剂“无损”的情况下对反应性能进行调控,优于通常采用的化学修饰方法。

这种聚二乙烯基苯具有超疏水的表面。当催化剂中混入这个材料后,反应产物水就会迅速脱附和扩散。虽然整个反应体系内的气氛组成没有变化,但是活性位点所处的微观环境会变得相对“干燥”,这为催化剂持续高效工作提供了有利条件。“我们把原来被水遮挡的活性位点释放出来,催化反应就可以持续推进。”王亮说。

大道至简,这一小小的改变,让转化效率翻倍,同时对产物的选择性也进行了优化,实现低温条件下的高效率。

对于未来的应用,肖丰收说,这种物理混合的新型催化体系,不需要改造现有工业反应路线,就能够高效率地应用于生产实践,让煤炭发挥更大的作用。

相关论文信息:

https://www.science.org/doi/10.1126/science.abo0356

 
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
首张另一星系中的恒星照片出炉 《自然》(20241121出版)一周论文导读
清华这位院士搭建了一座室外地质博物园 科学家完整构建火星空间太阳高能粒子能谱
>>更多
 
一周新闻排行
 
编辑部推荐博文
 
Baidu
map