近日,中科院大连化学物理研究所研究员吴凯丰团队在低维材料电荷转移动力学研究方面取得新进展,首次观测到低维材料电荷转移的Marcus反转区间。相关研究成果发表在《自然—通讯》上。
电荷转移是光合作用、生物信号传导及各类能源转化中的关键步骤。自上世纪50年代以来,科研人员对电荷转移进行了深入的理论研究。Marcus理论的精髓是预测了电荷转移的反转区间,即当反应驱动力大于重组能之后,转移速率随驱动力增加而降低。这一与直觉相悖的预测被争论了几十年。直到上世纪80年代,科学家基于新兴的飞秒瞬态光谱技术,在实验上直接观测到分子间电荷转移的反转区间。Marcus也因而独得了1992年的诺贝尔化学奖。
近几十年发展的量子点、碳纳米管、二维材料等低维材料在光电器件和能源转化中展现出巨大潜力;这些应用的核心过程之一是低维材料的电荷转移。然而,以量子点为主的研究工作表明,其电荷转移速率往往随驱动力增加而单调增加,从未观测到Marcus反转区间。有研究人员提出Auger辅助电荷转移的可能性:量子点中电子—空穴之间存在强烈的库伦耦合作用,其中一个电荷转移的多余驱动力可用于激发另一电荷,从而回避了Marcus反转区间。
吴凯丰团队提出,若能建立方法研究单独存在的电子或空穴态的电荷转移,有望观测到Marcus反转区间,同时也能成为Auger辅助模型的强有力证据。为此,团队对无机量子点/有机分子界面处的电荷和能量转移动力学进行了深入系统的研究,提出了研究量子点单电荷转移的动力学方法,可以先激发量子点表面的有机分子,将电荷注入到量子点中,获得瞬态布居的单电荷态,进而观测后续复合过程的电荷转移动力学;也可激发量子点转移一个电荷至分子,然后观测后续第二步电荷转移生成分子三线态的动力学。团队构建了CdS量子点/茜素分子的模型体系,通过量子点尺寸调控电荷转移驱动力,基于飞秒瞬态吸收光谱直接观测到了量子点电荷转移的Marcus反转区间。
考虑到电子—空穴强烈耦合是低维材料的普遍特征,上述结果对低维材料应具有普适性。为证明这一点,团队还采用二维CdSe纳米片开展研究,也取得了一致的结论,将零维量子点和二维纳米片在单电荷状态下的电荷转移数据整合到一起,获得了教科书式的Marcus电荷转移曲线。
该研究不仅加深了人们对于低维材料及其电荷转移机制的理解,对指导低维材料能源转化也具有重要意义。以低维材料作为吸光单元进行能源转化时,第一步电荷转移可能遵从的是Auger辅助的模型,而第二步转移则符合典型的Marcus理论模型。设计电荷转移驱动力时应分别参考这两种模型,从而最大程度促进电荷分离以及抑制电荷复合。
相关论文信息:https://doi.org/10.1038/s41467-021-26705-x
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。