CHINA SCIENCE DAILY

中国科学院主管

中国科学报社出版

国内统一连续出版物号 CN 11 – 0084 代号 1 - 82

主办:中国科学院 中国工程院 国家自然科学基金委员会 中国科学技术协会

总第 8653 期 2024年12月18日 星期三 今日4版

新浪微博 http://weibo.com/kexuebao

科学网 <u>www.sciencenet.cn</u>

顺境高产 逆境稳产-

给作物装上"环境智能"开关

辛辛苦苦一季度,改良的品种竟被老鼠吃了。 2023年5月,中国科学院遗传与发育生物 学研究所(以下简称溃传发育所)博士生娄焕昌 在海南对其团队开发的"环境智能"基因编辑水 稻进行小区测产。看着被老鼠啃得光秃秃的稻 秆,蹲在田里的娄焕昌欲哭无泪。

从最初构思"环境智能"设计育种路线,到开 发基因编辑工具,再到经过无数次摸索将基因片 段精准敲人、建立育种技术体系,并在田间筛选出 纯合品种,这项研究他们已经开展了3年多。

正当大家满怀期待时, 娄焕昌不得不硬着 头皮向导师许操汇报——这次试验"砸了"。出 乎意料的是,导师非但没责备他,反而安慰他

"老鼠爱大米,它们比我们看得准。你看,它 们只吃改良品种,说明这些稻米确实饱满。"遗 传发育所研究员许操说。

经过5年研究、测产,研究表明,许操团队 提出的"环境智能"作物设计育种策略行得 通——既能在顺境中实现高产,又能在逆境中

12月14日,相关成果发表于《细胞》。审稿人 表示,该研究为解决全球变暖引发的粮食安全问 题提供了行之有效且前景广阔的育种策略。

巧妙育种,让植物更"皮实"

2020年一次课题组组会上,许操和团队成 员想通过"头脑风暴"凝练出一个"大科学问 ---既具有前沿探索价值,也贴合国家重大 需求,同时又挑战世界生物育种科技制高点。

他们将目光迅速锁定在应对气候变化对农

业带来的严峻挑战上。

随着全球气候变化的加剧,农业灾害频发、作 物大幅减产。许操查阅相关数据发现,仅在2023 年,我国农作物受灾面积就达到1.58亿亩,产量损 失超过1000亿斤,直接经济损失3454.5亿元。

即便在农业设施相对完善的发达国家,因 气候变化导致的农业减产也平均达到8%~10%。 若以此推算,全球主要农作物一年的保守减产 量可达 2 万亿斤, 这无疑为解决全球饥饿问题 增添了重重困难。

许操(右二)与团队成员在京郊实验基地。 受访者供图

植物变得更加'皮实',对气候环境变化更有韧 性,进一步打破现有单产提升的瓶颈。

但这在实际农业生产中并非易事。为适应 环境变化,高等植物进化出一套十分灵敏的"生 存 - 防御"策略。在遭遇高温逆境时,它们会调 整营养分配策略,节省能量,减少果实营养供 给,只保障少数种子存活用以繁衍后代,从而导 致大部分果实发育不良、产量下降。这会造成番 茄等果蔬植物落花落果、果实大小不均、糖度 低,也会让水稻、小麦、玉米、大豆等谷物出现瘪 壳、秃尖、空荚等现象。

这些现象正是百年经典理论——"源 - 库' 理论中的典型问题。"源 - 库"即植物体内光合产 物从叶片等"源"器官向根、茎、果实、种子等"库" 器官运输与分配的过程,也被称为"源 - 库 - 流"。 这一过程除了具有科学意义,还蕴藏着让作物增 产的巨大潜力。事实上,仅与植物"源"器官中光合 作用相关的研究,就已催生了6项诺贝尔奖。

如何通过人工设计让"源 - 库 - 流"释放增 产潜力? 许操团队提出"环境智能"设计育种策 略,确立了"顺境增产、逆境稳产"的攻坚目标。 他们深入研究了"源 - 库 - 流"中的关键枢纽基 因——细胞壁蔗糖转化酶(CWIN),该基因可将 光合作用产生的蔗糖转化为葡萄糖和果糖以帮 助果实发育。他们还建立了一套高效的植物引 导编辑技术体系,给细胞壁蔗糖转化酶安装了 一个"温度感应器"——热响应元件(HSE)。这一 创新设计使得作物能够自主感应温度变化,并 根据环境条件灵活调控体内营养物质的分配, 实现"按需分配,精准递送"。

"过去,一旦植物遭遇逆境,细胞壁蔗糖转 化酶的活性就会被抑制,不能有效'卸载'和'转 运'蔗糖,果实和种子就会缺乏必要的营养。"许 操说,"而现在,我们的作物能够通过温度感应 器自主判断环境条件, 在顺境时向果实多运输 营养并进行储存,实现高产;在逆境时则上调细 胞壁转化酶的表达,缓解果实的'糖饥饿'状态, 保证果实的稳产和品质。

中国科学院院士、清华大学教授谢道昕评价 称,许操团队采取了一种非常巧妙的育种策略,解 决了高温导致的"流"滞、"库"亏问题,对未来作物 的智能分子设计育种具有开创意义。

打通"关卡",实现增产

打通"环境智能"设计育种的技术"关卡"后, 许操团队培育出"T0代"(初代基因编辑)材料。接 下来,改良种质的田间测产成为他们的新战场。

为了模拟真实农业灾害环境,研究团队除 了在自然条件下按照时令或延后时令进行田间 试验外,还采用温室大棚、"棚中棚"等不同栽培 模式模拟不同的温度条件。"七八月份,我们在 温室中设立的'棚中棚',日平均温度可达 45 摄 氏度,这样可以更好地评估改良后的番茄在开 花、结果时遭遇真实逆境时的产量。"娄焕昌对 《中国科学报》说。

在田间工作期间,娄焕昌还掌握了"搭棚技 。一开始因为缺乏经验,他搭的平顶棚总被 雨水压坏。他又改用"屋脊"状的高棚顶,但没料 到棚顶风阻太大,棚经常被风吹倒。于是,他向 附近的农民"取经",将棚顶改造成拱形顶,终于 让它们经得起风吹雨打。

遗传发育所助理研究员黎舒佳告诉记者, 她曾在许操建议下向农民学习"打叉",控制番 茄的侧枝生长。"在实验室中,我们通常在侧枝 长到5厘米时就剪掉。但在实际生产中,打叉的 时间和方法对产量的影响要复杂得多。比如,夏 季打叉的时间要稍晚一些, 以控制植物生长过 旺;冬季打叉则要及时,以避免有限的光合作用

他想让"单原子催化"上货架也上书架

■本报记者 孙丹宁

因提出"单原子催化"这一概念,中国科学 院院士、中国科学院大连化学物理研究所(以 下简称大连化物所)研究员张涛荣获 2024 未 来科学大奖"物质科学奖"

"用化学最小的尺度研究和理解催化反 应的机理和本质,而不是像过去一样在'黑 匣子炒菜',我觉得提出这个概念是十分必 要的。"张涛说,"提出一个新的概念需要能 力和机遇并存。大家几十年努力的汗水,才 浇灌出'单原子催化'这一中国人原创的科

翻过山丘,就能听到新的故事

1963年,张涛出生于陕西省安康市一个群 山环绕的农村。年幼的他时常幻想,山的那边 是什么样的,"我想走出大山,去看看大海"。

1978年3月,时任中国科学院院长郭沫若 在全国科学大会闭幕式上发表题为《科学的春 天》的讲话。当时,不满15岁的张涛热血沸腾: "在那个激情燃烧的年代,'学好数理化,走遍 天下都不怕'是我们的奋斗口号,许多青年都 立志要用科学振兴国家,我也决心要当一名科

在社会渴求"早出人才、快出人才"的背景 下,政策允许从高一年级挑选2%的优秀学生提 前参加高考。张涛所在的安康中学挑选了11名 成绩优异的高一学生,张涛位列其中。热爱数学 的他报考了数学相关专业,由于没学过高二以上 课程,他最终被调剂到陕西理工大学化学系。

刚刚接触化学,张涛就被其中的奥秘所吸 引,并逐渐爱上了这门神秘的学科。

然而, 当时地方高校的科研实力较为薄 弱,买不起相应的实验设备。这让早早就立志 成为科学家的张涛有点"蒙":"没有实验经历 怎么办?"

第一次考研以失败告终。1982年,张涛被 分配到母校安康中学任教,但他从没放弃过继 续深造的念头。"长期在陕南的秦岭和巴山学 习与生活, 使我对大山外面的世界充满渴望, 特别是大海。所以在选择读研究生的单位时, 我有两个关键坐标,一是在海边,二是选中国 最好的研究所。"张涛说。

1983年,张涛如愿来到美丽的海滨城市大 连,考入大连化物所,攻读硕士和博士研究生。

张涛在 2024 未来科学大奖颁奖现场。 大连化物所供图

"这是我人生中最重要也是最正确的选择之 一。"张涛说。

三十年磨一剑,提出国际原创概念

大连化物所作为中国催化研究领域的殿堂, 和张涛梦想的一样。在这里,"英雄不问出处",只 要有真本事,就可以安心从事科研工作。

"我遇到了导师林励吾院士和臧景龄研究员, 他们把我引入催化化学的研究领域。"张涛说。刚 到大连化物所时,他就跟随导师开展高分散金属 催化剂的研究,这也是单原子催化剂的雏形。

1995年,大连化物所内航天催化剂方向 "风雨飘摇",面临青黄不接的难题。"所里领导 说'要不让年轻人试试'。"32岁的张涛被任命 为课题组组长。

随后,张涛开始负责航天催化剂的研制工 作,他领导发明的肼水燃料分解催化剂成功应 用于国家任务,并开拓了推进剂催化分解技术 在我国航空领域的应用。他还完成了宇宙飞船 生命保障系统中的拟人耗氧材料及组件的研 制,并在"神舟"系列上得到应用。同时,他研制 的高效脱氧剂广泛应用于石化等领域。

张涛把课题组做大做强的同时,开始思考 新的规划。在"以国家需求为己任"思想的引领 下,单原子催化的想法进入了他的脑海

(下转第2版)

人体蛋白质组导航 国际大科学计划白皮书发布

本报讯(记者倪思洁、朱汉斌通讯员沈基 飞)12月12日,《自然》杂志在线发布了中国科 学家领衔发起、18国科学家团队联合署名的人 体蛋白质组导航国际大科学计划(以下简称 "π-HuB 计划")白皮书,标志着中国在全球生 命科学领域的地位、学术影响力以及组织领导 力进一步提升,同时也展示了中国蛋白质组学 研究在推动全球科技合作、构建人类卫生健康 共同体和人类命运共同体方面的重要贡献。

'π-HuB 计划"旨在通过全球顶级科学家 团队的大联盟、大协作,绘制人类全生命周期 全球性重大疾病及代表性膳食模式、生存环境 对应的人体蛋白质组图谱,解析人类蛋白质组 构成原理和演变规律,探索生物医学大数据从 信息知识到智慧的路径,实现人体蛋白质组定 位系统和人体从非健康状态到健康状态的精

20 多年前,人类基因组计划已成功绘制出 具有里程碑意义的基因组"全景图"。同样是破 解人体构造"天书","π-HuB 计划"则从更高 维度出发,专注于揭示生命活动的蛋白质组 "实时全景图谱"。

"人类基因组计划完成20多年后,促进了 全球生物经济的繁荣和腾飞,但其对人类生老 病死的影响尚未达到最初的预期。'牛'在基因 组,'命'在蛋白质组。人体有37万亿个细胞, 蛋白质的动态变化是决定生老病死的关键。 当前,全球生物科技的发展已经进入一个崭 新阶段, 'π-HuB 计划'将充分结合人工智 能和大数据分析,实现从数据、信息到知识、 智慧的升级转化,聚力推动生命科学和人类 健康事业的大发展、大繁荣。"在12月17日 举行的"π-HuB 计划"建设工作座谈会上, "π-HuB 计划"首席科学家、中国科学院院 士贺福初说。

据悉,"π-HuB 计划"培育项目于 2020 年 在广州启动实施。2022年12月,我国科学家正 式向全球科学界发起合作倡议。截至目前, "π-HuB 计划"已获得来自 20 多个国家和地 区、114个顶级科学家团队的支持,形成了多国 多机构共同参与、优势互补的全球协作网络。 同时,该计划预计历时 30年,各国共计

投入逾百亿规模。其一期前 10 年的三大核心 目标包括构建人体蛋白质组图谱、开发"元智 人"大模型以及构建由计算驱动的人体状态 "导航系统"。

相关论文信息:

https://doi.org/10.1038/s41586-024-08280-5

我国自主研发的 "核柴一号"正式发布

本报讯(记者朱汉斌通讯员朱丹)12月16日,我国自 主研发的核电站应急柴油发电机组——"核柴一号"正式 发布。记者从中国广核集团获悉,"核柴一号"多项核心性 能指标达到国际先进水平,标志着我国首次完全具备核电 站应急柴油发电机组自主设计及制造的能力。

核电应急柴油发电机组是核电站应急供电系统的最 一道防线,其系统功能在主电源和辅助电源失效时启 动,为安全设备提供应急电力,以确保反应堆安全停堆, 对保障核安全发挥着至关重要的作用。

据介绍,"核柴一号"具备启动快速可靠、平均无故障 时间大于 2000 小时、平均修复时间小于 10 小时、集成化 和智能化程度高等特点,未来将在福建宁德核电二期、广 东太平岭核电二期、山东招远核电一期等项目陆续落地

▶"核柴一号"。

中国广核集团供图

46 岁老船退役,美国失去科学海洋钻探领导地位

本报讯由于无法填补预算缺口,今年9月, 美国国家科学基金会决定让 46 岁的"乔迪斯· 决心"号大洋钻探船(JR)退役。目前,JR 停靠在 挪威克里斯蒂安桑港,实验室设备已被拆除。这 也意味着,国际大洋发现计划(IODP)由美国主 导的时代结束了。

据《科学》报道,作为 IODP 的旗舰号,JR 经 历了 192 次探险,追踪了过去几百万年来导致亚 洲季风的洋流波动,提取了2500万年前的沉积物 以追踪早期南极冰盖的涨落,探测了6600万年前 导致恐龙灭绝的小行星撞击留下的地质边界。

美国詹姆斯麦迪逊大学的海洋沉积学家 Kristen St. John 是 JR 去年 8 月最后一次航行的 联合负责人。他说,中国已占据科学海洋钻探的 领导地位,并于今年推出了一艘全新的大洋科 考钻探船"梦想"号。"对于美国来说,没有采取 下一步措施非常令人失望。

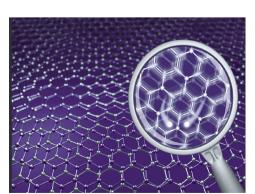
美国科学家一直在努力寻找愿意为 IODP 提 供 2000 万美元资助的合作国家,但目前一无所 获。如果能够在国会提供的4800万美元的基础上 再获得这笔资助,JR 就可以在未来5年内保持运 转。尽管美国众议院起草了本财年的支出法案,将 资金增加到6000万美元,但即使获得批准,这一

水平也不足以维持 JR 的运转。 "6个月后,重新启动这样一艘船的可行性 就会降低。"美国俄勒冈州立大学的海洋地质学 家 Anthony Koppers 说。

现在,欧洲和日本结为联盟正在发起 IODP3。日本长期以来一直运营着一艘先进的 钻探船"地球"号,但该船主要用于油田作业,很 少用于科学研究,且每年只部署一两次,主要在 日本水域。根据 IODP3,日本计划将"地球"号的 现场作业扩展到西太平洋和印度洋。

与此同时,欧洲没有专门的钻探船,而是租用 商船执行特定任务。从2025年春季开始,IODP3 探险队将租用一艘商船, 在马萨诸塞州海岸外玛 莎葡萄园岛以南的大陆架进行钻探, 目的是探索 为什么内陆含水层的淡水会渗入海洋。

在重新建造一艘专用钻探船之前,美国还 将租用商业钻探船进行研究巡航。美国哥伦比 亚大学负责 IODP 美国科学支持项目的 Carl Brenner 说,建造这艘船的计划正在进行中,但 (李木子) 可能需要 10 多年时间才能完成。


研究发现超导魔角石墨烯中的 强谷间 - 电声子耦合效应

本报讯(记者王兆昱)上海科技大学物质 科学与技术学院陈宇林、陈成团队利用纳米角 分辨光电子能谱(Nano-ARPES)技术,发现了 超导魔角石墨烯中显著的谷间 - 电声子耦合 效应,并确定了相应的声子模式。这一发现对 理解魔角石墨烯的超导机理具有重要意义。近 日,相关成果在线发表于《自然》。

魔角石墨烯因超导电性和强关联电子特 性成为国际凝聚态物理研究的热点。其超导性 来源于双层转角石墨烯在"魔角"条件下的平 展能带,这极大增强了电子的相互作用,为研 究莫特绝缘态、高温超导等强关联电子体系提 供了新平台。此外,魔角石墨烯中存在独特的 量子反常霍尔效应拓扑态,为实现拓扑超导等 奇异量子态提供了可能。然而,科学家对魔角 石墨烯精细的电子结构,特别是对其超导现象 起源的理解尚未有定论。

角分辨光电子能谱(ARPES)作为一种 能直接测量材料的精细电子结构的技术,已在 探索高温超导机理和新型拓扑量子材料的发 现中发挥了重要作用。然而由于魔角石墨烯器 件的空间尺寸仅有微米量级, 受限于亚毫米 量级的空间分辨率,传统 ARPES 技术难以 发挥作用。目前,科研人员已开发出具有亚 微米量级空间分辨率的 Nano-ARPES 技术, 如上海同步辐射光源二期工程中纳米自旋 与磁学线站,能够精确测量微米尺度量子材 料的电子结构。

该研究中, 陈宇林、陈成团队利用 Nano-ARPES 技术,对双层转角石墨烯的电子

超导魔角石墨烯中电声子耦合示意图。

结构进行了系统表征。他们在超导魔角石墨烯 的电子能谱中首次发现了新奇的平带复制现 象,并且平带与复制带之间具有固定的能量间 隔;而在非超导的魔角石墨烯或不超导的非魔 角石墨烯中,均未观察到类似现象。

实验结果结合理论计算分析表明,这些平 带复制现象来源于超导魔角石墨烯中平带电 子与具有 150meV 能量的谷间声子强耦合。系 统的实验结果进一步表明,该电声子耦合与转 角石墨烯中的超导电性高度相关。这些研究结 果揭示了超导魔角石墨烯的独特电子结构,为 理解其超导起源及其独特性质指明了方向。

相关论文信息:

https://doi.org/10.1038/s41586-024-0822